deadline_ma¶
Classes
|
Moving average model that uses exact previous dates to predict. |
|
Enum for seasonality mode for DeadlineMovingAverageModel. |
- class DeadlineMovingAverageModel(window: int = 3, seasonality: str = 'month')[source]¶
Moving average model that uses exact previous dates to predict.
Notes
This model supports in-sample and out-of-sample prediction decomposition. Prediction components are corresponding target seasonal lags (monthly or annual) with weights of \(1/window\).
Initialize deadline moving average model.
Length of the context is equal to the number of
window
months or years, depending on theseasonality
.- Parameters
window (int) – Number of values taken for forecast for each point.
seasonality (str) – Only allowed values are “month” and “year”.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.deadline_ma.DeadlineMovingAverageModel [source]¶
Fit model.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
- Returns
Model after fit
- Return type
- forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make autoregressive forecasts.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions
- Raises
NotImplementedError: – if return_components mode is used
ValueError: – if model isn’t fitted
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type
- get_model() etna.models.deadline_ma.DeadlineMovingAverageModel [source]¶
Get internal model.
- Returns
Itself
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes
window
parameter. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions using true values as autoregression context (teacher forcing).
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
return_components (bool) – If True additionally returns prediction components
- Returns
Dataset with predictions
- Raises
NotImplementedError: – if return_components mode is used
ValueError: – if model isn’t fitted
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- property context_size: int¶
Upper bound to context size of the model.