mixins

Classes

ModelForecastingMixin()

Base class for model mixins.

MultiSegmentModelMixin(base_model)

Mixin for holding methods for multi-segment prediction.

NonPredictionIntervalContextIgnorantModelMixin()

Mixin for models that don't support prediction intervals and don't need context for prediction.

NonPredictionIntervalContextRequiredModelMixin()

Mixin for models that don't support prediction intervals and need context for prediction.

PerSegmentModelMixin(base_model)

Mixin for holding methods for per-segment prediction.

PredictionIntervalContextIgnorantModelMixin()

Mixin for models that support prediction intervals and don't need context for prediction.

PredictionIntervalContextRequiredModelMixin()

Mixin for models that support prediction intervals and need context for prediction.

SaveNNMixin()

Implementation of AbstractSaveable torch related classes.

class ModelForecastingMixin[source]

Base class for model mixins.

class MultiSegmentModelMixin(base_model: Any)[source]

Mixin for holding methods for multi-segment prediction.

It currently isn’t working with prediction intervals and context.

Init MultiSegmentModel.

Parameters

base_model (Any) – Internal model which will be used to forecast segments, expected to have fit/predict interface

fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.mixins.MultiSegmentModelMixin[source]

Fit model.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

Returns

Model after fit

Return type

etna.models.mixins.MultiSegmentModelMixin

get_model() Any[source]

Get internal model that is used inside etna class.

Internal model is a model that is used inside etna to forecast segments, e.g. catboost.CatBoostRegressor or sklearn.linear_model.Ridge.

Returns

Internal model

Return type

Any

class NonPredictionIntervalContextIgnorantModelMixin[source]

Mixin for models that don’t support prediction intervals and don’t need context for prediction.

forecast(ts: etna.datasets.tsdataset.TSDataset, return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

predict(ts: etna.datasets.tsdataset.TSDataset, return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions with using true values as autoregression context if possible (teacher forcing).

Parameters
Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

class NonPredictionIntervalContextRequiredModelMixin[source]

Mixin for models that don’t support prediction intervals and need context for prediction.

forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • return_components (bool) – If True additionally returns forecast components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions with using true values as autoregression context if possible (teacher forcing).

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • return_components (bool) – If True additionally returns prediction components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

class PerSegmentModelMixin(base_model: Any)[source]

Mixin for holding methods for per-segment prediction.

Init PerSegmentModelMixin.

Parameters

base_model (Any) – Internal model which will be used to forecast segments, expected to have fit/predict interface

fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.mixins.PerSegmentModelMixin[source]

Fit model.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

Returns

Model after fit

Return type

etna.models.mixins.PerSegmentModelMixin

get_model() Dict[str, Any][source]

Get internal models that are used inside etna class.

Internal model is a model that is used inside etna to forecast segments, e.g. catboost.CatBoostRegressor or sklearn.linear_model.Ridge.

Returns

dictionary where key is segment and value is internal model

Return type

Dict[str, Any]

class PredictionIntervalContextIgnorantModelMixin[source]

Mixin for models that support prediction intervals and don’t need context for prediction.

forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns forecast components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

predict(ts: etna.datasets.tsdataset.TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions with using true values as autoregression context if possible (teacher forcing).

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns prediction components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

class PredictionIntervalContextRequiredModelMixin[source]

Mixin for models that support prediction intervals and need context for prediction.

forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns forecast components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions with using true values as autoregression context if possible (teacher forcing).

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns prediction components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

class SaveNNMixin[source]

Implementation of AbstractSaveable torch related classes.

It saves object to the zip archive with 2 files:

  • metadata.json: contains library version and class name.

  • object.pt: object saved by torch.save.

classmethod load(path: pathlib.Path) typing_extensions.Self

Load an object.

Warning

This method uses dill module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.

Parameters

path (pathlib.Path) – Path to load object from.

Returns

Loaded object.

Return type

typing_extensions.Self

save(path: pathlib.Path)

Save the object.

Parameters

path (pathlib.Path) – Path to save object to.