autoarima¶
Classes
|
Class for holding auto arima model. |
|
Class for holding auto arima model. |
- class AutoARIMAModel(**kwargs)[source]¶
Class for holding auto arima model.
Method
predict
can use true target values only on train data on future data autoregression forecasting will be made even if targets are known.Notes
We use
pmdarima.arima.arima.ARIMA
.This model supports in-sample and out-of-sample prediction decomposition. Prediction components for AutoARIMA model are: exogenous and ARIMA components. Decomposition is obtained directly from fitted model parameters.
Init auto ARIMA model with given params.
- Parameters
**kwargs – Training parameters for auto_arima from pmdarima package.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.mixins.PerSegmentModelMixin ¶
Fit model.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
- Returns
Model after fit
- Return type
- forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset ¶
Make predictions.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions
- Return type
- get_model() Dict[str, Any] ¶
Get internal models that are used inside etna class.
Internal model is a model that is used inside etna to forecast segments, e.g.
catboost.CatBoostRegressor
orsklearn.linear_model.Ridge
.- Returns
dictionary where key is segment and value is internal model
- Return type
Dict[str, Any]
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] ¶
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns
Empty grid.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- predict(ts: etna.datasets.tsdataset.TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset ¶
Make predictions with using true values as autoregression context if possible (teacher forcing).
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns prediction components
- Returns
Dataset with predictions
- Return type
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- property context_size: int¶
Context size of the model. Determines how many history points do we ask to pass to the model.
Zero for this model.