tft

Classes

TFTModel([decoder_length, encoder_length, ...])

Wrapper for pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.

class TFTModel(decoder_length: Optional[int] = None, encoder_length: Optional[int] = None, dataset_builder: Optional[etna.models.nn.utils.PytorchForecastingDatasetBuilder] = None, train_batch_size: int = 64, test_batch_size: int = 64, lr: float = 0.001, hidden_size: int = 16, lstm_layers: int = 1, attention_head_size: int = 4, dropout: float = 0.1, hidden_continuous_size: int = 8, loss: Optional[pytorch_forecasting.metrics.MultiHorizonMetric] = None, trainer_params: Optional[Dict[str, Any]] = None, quantiles_kwargs: Optional[Dict[str, Any]] = None, **kwargs)[source]

Wrapper for pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.

Notes

We save pytorch_forecasting.data.timeseries.TimeSeriesDataSet in instance to use it in the model. It`s not right pattern of using Transforms and TSDataset.

Initialize TFT wrapper.

Parameters
  • decoder_length (Optional[int]) – Decoder length.

  • encoder_length (int) – Encoder length.

  • dataset_builder (etna.models.nn.utils.PytorchForecastingDatasetBuilder) – Dataset builder for PytorchForecasting.

  • train_batch_size (int) – Train batch size.

  • test_batch_size (int) – Test batch size.

  • lr (float) – Learning rate.

  • hidden_size (int) – Hidden size of network which can range from 8 to 512.

  • lstm_layers (int) – Number of LSTM layers.

  • attention_head_size (int) – Number of attention heads.

  • dropout (float) – Dropout rate.

  • hidden_continuous_size (int) – Hidden size for processing continuous variables.

  • loss (MultiHorizonMetric) – Loss function taking prediction and targets. Defaults to pytorch_forecasting.metrics.QuantileLoss.

  • trainer_kwargs – Additional arguments for pytorch_lightning Trainer.

  • quantiles_kwargs (Optional[Dict[str, Any]]) – Additional arguments for computing quantiles, look at to_quantiles() method for your loss.

  • trainer_params (Dict[str, Any]) –

fit(ts: etna.datasets.tsdataset.TSDataset)

Fit model.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – TSDataset to fit.

Returns

model

forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

This method will make autoregressive predictions.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns forecast components

Returns

TSDataset with predictions.

Return type

TSDataset

get_model() Any[source]

Get internal model that is used inside etna class.

Model is the instance of pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.

Returns

Internal model

Return type

Any

classmethod load(path: pathlib.Path) typing_extensions.Self

Load an object.

Warning

This method uses dill module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.

Parameters

path (pathlib.Path) – Path to load object from.

Returns

Loaded object.

Return type

typing_extensions.Self

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes parameters: hidden_size, lstm_layers, dropout, attention_head_size, lr. Other parameters are expected to be set by the user.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]

predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

This method will make predictions using true values instead of predicted on a previous step. It can be useful for making in-sample forecasts.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns prediction components

Returns

TSDataset with predictions.

Return type

TSDataset

save(path: pathlib.Path)

Save the object.

Parameters

path (pathlib.Path) – Path to save object to.

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.

property context_size: int

Context size of the model.