nets¶
Classes
|
Base class for N-BEATS models. |
|
Batch specification for N-BEATS. |
|
N-BEATS generic model. |
|
Interpretable N-BEATS model. |
- class NBeatsBaseNet(model: torch.nn.modules.module.Module, input_size: int, output_size: int, loss: torch.nn.modules.module.Module, lr: float, optimizer_params: Optional[Dict[str, Any]])[source]¶
Base class for N-BEATS models.
Init DeepBaseNet.
- Parameters
model (nn.Module) –
input_size (int) –
output_size (int) –
loss (nn.Module) –
lr (float) –
optimizer_params (Optional[Dict[str, Any]]) –
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (string) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- Return type
None
- all_gather(data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False) Union[torch.Tensor, Dict, List, Tuple] ¶
Allows users to call
self.all_gather()
from the LightningModule, thus making theall_gather
operation accelerator agnostic.all_gather
is a function provided by accelerators to gather a tensor from several distributed processes.- Parameters
data (Union[torch.Tensor, Dict, List, Tuple]) – int, float, tensor of shape (batch, …), or a (possibly nested) collection thereof.
group (Optional[Any]) – the process group to gather results from. Defaults to all processes (world)
sync_grads (bool) – flag that allows users to synchronize gradients for the all_gather operation
- Returns
A tensor of shape (world_size, batch, …), or if the input was a collection the output will also be a collection with tensors of this shape.
- Return type
Union[torch.Tensor, Dict, List, Tuple]
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T ¶
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).- Parameters
fn (
Module
-> None) – function to be applied to each submoduleself (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- backward(loss: torch.Tensor, optimizer: Optional[lightning_fabric.utilities.types.Steppable], optimizer_idx: Optional[int], *args: Any, **kwargs: Any) None ¶
Called to perform backward on the loss returned in
training_step()
. Override this hook with your own implementation if you need to.- Parameters
loss (torch.Tensor) – The loss tensor returned by
training_step()
. If gradient accumulation is used, the loss here holds the normalized value (scaled by 1 / accumulation steps).optimizer (Optional[lightning_fabric.utilities.types.Steppable]) – Current optimizer being used.
None
if using manual optimization.optimizer_idx (Optional[int]) – Index of the current optimizer being used.
None
if using manual optimization.args (Any) –
kwargs (Any) –
- Return type
None
Example:
def backward(self, loss, optimizer, optimizer_idx): loss.backward()
- bfloat16() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- buffers(recurse: bool = True) Iterator[torch.Tensor] ¶
Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
- Return type
Iterator[torch.Tensor]
Example:
>>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over immediate children modules.
- Yields
Module – a child module
- Return type
Iterator[torch.nn.modules.module.Module]
- clip_gradients(optimizer: torch.optim.optimizer.Optimizer, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None) None ¶
Handles gradient clipping internally.
Note
Do not override this method. If you want to customize gradient clipping, consider using
configure_gradient_clipping()
method.For manual optimization (
self.automatic_optimization = False
), if you want to use gradient clipping, consider callingself.clip_gradients(opt, gradient_clip_val=0.5, gradient_clip_algorithm="norm")
manually in the training step.
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
gradient_clip_val (Optional[Union[int, float]]) – The value at which to clip gradients.
gradient_clip_algorithm (Optional[str]) – The gradient clipping algorithm to use. Pass
gradient_clip_algorithm="value"
to clip by value, andgradient_clip_algorithm="norm"
to clip by norm.
- Return type
None
- configure_callbacks() Union[Sequence[pytorch_lightning.callbacks.callback.Callback], pytorch_lightning.callbacks.callback.Callback] ¶
Configure model-specific callbacks. When the model gets attached, e.g., when
.fit()
or.test()
gets called, the list or a callback returned here will be merged with the list of callbacks passed to the Trainer’scallbacks
argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer’s callbacks list, it will take priority and replace them. In addition, Lightning will make sureModelCheckpoint
callbacks run last.- Returns
A callback or a list of callbacks which will extend the list of callbacks in the Trainer.
- Return type
Union[Sequence[pytorch_lightning.callbacks.callback.Callback], pytorch_lightning.callbacks.callback.Callback]
Example:
def configure_callbacks(self): early_stop = EarlyStopping(monitor="val_acc", mode="max") checkpoint = ModelCheckpoint(monitor="val_loss") return [early_stop, checkpoint]
- configure_gradient_clipping(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None) None ¶
Perform gradient clipping for the optimizer parameters. Called before
optimizer_step()
.- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
optimizer_idx (int) – Index of the current optimizer being used.
gradient_clip_val (Optional[Union[int, float]]) – The value at which to clip gradients. By default value passed in Trainer will be available here.
gradient_clip_algorithm (Optional[str]) – The gradient clipping algorithm to use. By default value passed in Trainer will be available here.
- Return type
None
Example:
# Perform gradient clipping on gradients associated with discriminator (optimizer_idx=1) in GAN def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): if optimizer_idx == 1: # Lightning will handle the gradient clipping self.clip_gradients( optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm ) else: # implement your own custom logic to clip gradients for generator (optimizer_idx=0)
- configure_optimizers() Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]] [source]¶
Optimizer configuration.
- Return type
Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]]
- configure_sharded_model() None ¶
Hook to create modules in a distributed aware context. This is useful for when using sharded plugins, where we’d like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time.
This hook is called during each of fit/val/test/predict stages in the same process, so ensure that implementation of this hook is idempotent.
- Return type
None
- cpu() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- cuda(device: Optional[Union[torch.device, int]] = None) typing_extensions.Self ¶
Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
- Parameters
device (Optional[Union[torch.device, int]]) – If specified, all parameters will be copied to that device. If None, the current CUDA device index will be used.
- Returns
self
- Return type
Module
- double() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- eval() torch.nn.modules.module.T ¶
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- extra_repr() str ¶
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- Return type
str
- float() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- forward(batch: etna.models.nn.nbeats.nets.NBeatsBatch) torch.Tensor [source]¶
Forward pass.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
Prediction data.
- Return type
- freeze() None ¶
Freeze all params for inference.
Example:
model = MyLightningModule(...) model.freeze()
- Return type
None
- classmethod from_compiled(model: torch._dynamo.OptimizedModule) pl.LightningModule ¶
Returns an instance LightningModule from the output of
torch.compile
.The
torch.compile
function returns atorch._dynamo.OptimizedModule
, which wraps the LightningModule passed in as an argument, but doesn’t inherit from it. This means that the output oftorch.compile
behaves like a LightningModule but it doesn’t inherit from it (i.e. isinstance will fail).Use this method to obtain a LightningModule that still runs with all the optimizations from
torch.compile
.- Parameters
model (torch._dynamo.OptimizedModule) –
- Return type
pl.LightningModule
- get_buffer(target: str) torch.Tensor ¶
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The buffer referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any ¶
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns
Any extra state to store in the module’s state_dict
- Return type
object
- get_parameter(target: str) torch.nn.parameter.Parameter ¶
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The Parameter referenced by
target
- Return type
torch.nn.Parameter
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) torch.nn.modules.module.Module ¶
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters
target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns
The submodule referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- classmethod load_from_checkpoint(checkpoint_path: Union[str, pathlib.Path, IO], map_location: Optional[Union[torch.device, str, int, Callable[[Union[torch.device, str, int]], Union[torch.device, str, int]], Dict[Union[torch.device, str, int], Union[torch.device, str, int]]]] = None, hparams_file: Optional[Union[str, pathlib.Path]] = None, strict: bool = True, **kwargs: Any) typing_extensions.Self ¶
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"hyper_parameters"
.- Parameters
checkpoint_path (Union[str, pathlib.Path, IO]) – Path to checkpoint. This can also be a URL, or file-like object
map_location (Optional[Union[torch.device, str, int, Callable[[Union[torch.device, str, int]], Union[torch.device, str, int]], Dict[Union[torch.device, str, int], Union[torch.device, str, int]]]]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as in
torch.load()
.hparams_file (Optional[Union[str, pathlib.Path]]) –
Optional path to a
.yaml
or.csv
file with hierarchical structure as in this example:drop_prob: 0.2 dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a
.yaml
file with the hparams you’d like to use. These will be converted into adict
and passed into yourLightningModule
for use.If your model’s
hparams
argument isNamespace
and.yaml
file has hierarchical structure, you need to refactor your model to treathparams
asdict
.strict (bool) – Whether to strictly enforce that the keys in
checkpoint_path
match the keys returned by this module’s state dict.**kwargs – Any extra keyword args needed to init the model. Can also be used to override saved hyperparameter values.
kwargs (Any) –
- Returns
LightningModule
instance with loaded weights and hyperparameters (if available).- Return type
typing_extensions.Self
Note
load_from_checkpoint
is a class method. You should use yourLightningModule
class to call it instead of theLightningModule
instance.Example:
# load weights without mapping ... model = MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values model = MyLightningModule.load_from_checkpoint( PATH, num_layers=128, pretrained_ckpt_path=NEW_PATH, ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
- load_state_dict(state_dict: OrderedDict[str, Tensor], strict: bool = True)¶
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- log(name: str, value: Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]], prog_bar: bool = False, logger: Optional[bool] = None, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, metric_attribute: Optional[str] = None, rank_zero_only: bool = False) None ¶
Log a key, value pair.
Example:
self.log('train_loss', loss)
The default behavior per hook is documented here: Automatic Logging.
- Parameters
name (str) – key to log.
value (Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]) – value to log. Can be a
float
,Tensor
,Metric
, or a dictionary of the former.prog_bar (bool) – if
True
logs to the progress bar.logger (Optional[bool]) – if
True
logs to the logger.on_step (Optional[bool]) – if
True
logs at this step. The default value is determined by the hook. See Automatic Logging for details.on_epoch (Optional[bool]) – if
True
logs epoch accumulated metrics. The default value is determined by the hook. See Automatic Logging for details.reduce_fx (Union[str, Callable]) – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph (bool) – if
True
, will not auto detach the graph.sync_dist (bool) – if
True
, reduces the metric across devices. Use with care as this may lead to a significant communication overhead.sync_dist_group (Optional[Any]) – the DDP group to sync across.
add_dataloader_idx (bool) – if
True
, appends the index of the current dataloader to the name (when using multiple dataloaders). If False, user needs to give unique names for each dataloader to not mix the values.batch_size (Optional[int]) – Current batch_size. This will be directly inferred from the loaded batch, but for some data structures you might need to explicitly provide it.
metric_attribute (Optional[str]) – To restore the metric state, Lightning requires the reference of the
torchmetrics.Metric
in your model. This is found automatically if it is a model attribute.rank_zero_only (bool) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
None
- log_dict(dictionary: Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]], prog_bar: bool = False, logger: Optional[bool] = None, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, rank_zero_only: bool = False) None ¶
Log a dictionary of values at once.
Example:
values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} self.log_dict(values)
- Parameters
dictionary (Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]]) – key value pairs. The values can be a
float
,Tensor
,Metric
, a dictionary of the former or aMetricCollection
.prog_bar (bool) – if
True
logs to the progress base.logger (Optional[bool]) – if
True
logs to the logger.on_step (Optional[bool]) – if
True
logs at this step.None
auto-logs for training_step but not validation/test_step. The default value is determined by the hook. See Automatic Logging for details.on_epoch (Optional[bool]) – if
True
logs epoch accumulated metrics.None
auto-logs for val/test step but nottraining_step
. The default value is determined by the hook. See Automatic Logging for details.reduce_fx (Union[str, Callable]) – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph (bool) – if
True
, will not auto-detach the graphsync_dist (bool) – if
True
, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.sync_dist_group (Optional[Any]) – the ddp group to sync across.
add_dataloader_idx (bool) – if
True
, appends the index of the current dataloader to the name (when using multiple). IfFalse
, user needs to give unique names for each dataloader to not mix values.batch_size (Optional[int]) – Current batch size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.
rank_zero_only (bool) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
None
- log_grad_norm(grad_norm_dict: Dict[str, float]) None ¶
Override this method to change the default behaviour of
log_grad_norm
.If clipping gradients, the gradients will not have been clipped yet.
- Parameters
grad_norm_dict (Dict[str, float]) – Dictionary containing current grad norm metrics
- Return type
None
Example:
# DEFAULT def log_grad_norm(self, grad_norm_dict): self.log_dict(grad_norm_dict, on_step=True, on_epoch=True, prog_bar=False, logger=True)
- lr_scheduler_step(scheduler: Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau], optimizer_idx: int, metric: Optional[Any]) None ¶
Override this method to adjust the default way the
Trainer
calls each scheduler. By default, Lightning callsstep()
and as shown in the example for each scheduler based on itsinterval
.- Parameters
scheduler (Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau]) – Learning rate scheduler.
optimizer_idx (int) – Index of the optimizer associated with this scheduler.
metric (Optional[Any]) – Value of the monitor used for schedulers like
ReduceLROnPlateau
.
- Return type
None
Examples:
# DEFAULT def lr_scheduler_step(self, scheduler, optimizer_idx, metric): if metric is None: scheduler.step() else: scheduler.step(metric) # Alternative way to update schedulers if it requires an epoch value def lr_scheduler_step(self, scheduler, optimizer_idx, metric): scheduler.step(epoch=self.current_epoch)
- lr_schedulers() Union[None, List[Union[lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau]], lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau] ¶
Returns the learning rate scheduler(s) that are being used during training. Useful for manual optimization.
- Returns
A single scheduler, or a list of schedulers in case multiple ones are present, or
None
if no schedulers were returned inconfigure_optimizers()
.- Return type
Union[None, List[Union[lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau]], lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau]
- make_samples(df: pandas.core.frame.DataFrame, encoder_length: int, decoder_length: int) Iterable[dict] [source]¶
Make samples from segment DataFrame.
- Parameters
df (pandas.core.frame.DataFrame) –
encoder_length (int) –
decoder_length (int) –
- Return type
Iterable[dict]
- manual_backward(loss: torch.Tensor, *args: Any, **kwargs: Any) None ¶
Call this directly from your
training_step()
when doing optimizations manually. By using this, Lightning can ensure that all the proper scaling gets applied when using mixed precision.See manual optimization for more examples.
Example:
def training_step(...): opt = self.optimizers() loss = ... opt.zero_grad() # automatically applies scaling, etc... self.manual_backward(loss) opt.step()
- Parameters
loss (torch.Tensor) – The tensor on which to compute gradients. Must have a graph attached.
*args – Additional positional arguments to be forwarded to
backward()
**kwargs – Additional keyword arguments to be forwarded to
backward()
args (Any) –
kwargs (Any) –
- Return type
None
- modules() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
- Return type
Iterator[torch.nn.modules.module.Module]
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.Tensor]] ¶
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
prefix (str) – prefix to prepend to all buffer names.
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
(string, torch.Tensor) – Tuple containing the name and buffer
- Return type
Iterator[Tuple[str, torch.Tensor]]
Example:
>>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, torch.nn.modules.module.Module]] ¶
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple containing a name and child module
- Return type
Iterator[Tuple[str, torch.nn.modules.module.Module]]
Example:
>>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True)¶
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters
memo (Optional[Set[torch.nn.modules.module.Module]]) – a memo to store the set of modules already added to the result
prefix (str) – a prefix that will be added to the name of the module
remove_duplicate (bool) – whether to remove the duplicated module instances in the result or not
- Yields
(string, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.nn.parameter.Parameter]] ¶
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
(string, Parameter) – Tuple containing the name and parameter
- Return type
Iterator[Tuple[str, torch.nn.parameter.Parameter]]
Example:
>>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- on_after_backward() None ¶
Called after
loss.backward()
and before optimizers are stepped.Note
If using native AMP, the gradients will not be unscaled at this point. Use the
on_before_optimizer_step
if you need the unscaled gradients.- Return type
None
- on_after_batch_transfer(batch: Any, dataloader_idx: int) Any ¶
Override to alter or apply batch augmentations to your batch after it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch (Any) – A batch of data that needs to be altered or augmented.
dataloader_idx (int) – The index of the dataloader to which the batch belongs.
- Returns
A batch of data
- Return type
Any
Example:
def on_after_batch_transfer(self, batch, dataloader_idx): batch['x'] = gpu_transforms(batch['x']) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.MisconfigurationException – If using IPUs,
Trainer(accelerator='ipu')
.
- Parameters
batch (Any) –
dataloader_idx (int) –
- Return type
Any
- on_before_backward(loss: torch.Tensor) None ¶
Called before
loss.backward()
.- Parameters
loss (torch.Tensor) – Loss divided by number of batches for gradient accumulation and scaled if using native AMP.
- Return type
None
- on_before_batch_transfer(batch: Any, dataloader_idx: int) Any ¶
Override to alter or apply batch augmentations to your batch before it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch (Any) – A batch of data that needs to be altered or augmented.
dataloader_idx (int) – The index of the dataloader to which the batch belongs.
- Returns
A batch of data
- Return type
Any
Example:
def on_before_batch_transfer(self, batch, dataloader_idx): batch['x'] = transforms(batch['x']) return batch
- on_before_optimizer_step(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int) None ¶
Called before
optimizer.step()
.If using gradient accumulation, the hook is called once the gradients have been accumulated. See: :paramref:`~pytorch_lightning.trainer.Trainer.accumulate_grad_batches`.
If using native AMP, the loss will be unscaled before calling this hook. See these docs for more information on the scaling of gradients.
If clipping gradients, the gradients will not have been clipped yet.
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
optimizer_idx (int) – Index of the current optimizer being used.
- Return type
None
Example:
def on_before_optimizer_step(self, optimizer, optimizer_idx): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge for k, v in self.named_parameters(): self.logger.experiment.add_histogram( tag=k, values=v.grad, global_step=self.trainer.global_step )
- on_before_zero_grad(optimizer: torch.optim.optimizer.Optimizer) None ¶
Called after
training_step()
and beforeoptimizer.zero_grad()
.Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.
This is where it is called:
for optimizer in optimizers: out = training_step(...) model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad() backward()
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – The optimizer for which grads should be zeroed.
- Return type
None
- on_fit_end() None ¶
Called at the very end of fit.
If on DDP it is called on every process
- Return type
None
- on_fit_start() None ¶
Called at the very beginning of fit.
If on DDP it is called on every process
- Return type
None
- on_load_checkpoint(checkpoint: Dict[str, Any]) None ¶
Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.- Parameters
checkpoint (Dict[str, Any]) – Loaded checkpoint
- Return type
None
Example:
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- on_predict_batch_end(outputs: Optional[Any], batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the predict loop after the batch.
- Parameters
outputs (Optional[Any]) – The outputs of predict_step_end(test_step(x))
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_predict_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the predict loop before anything happens for that batch.
- Parameters
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_predict_end() None ¶
Called at the end of predicting.
- Return type
None
- on_predict_epoch_end(results: List[Any]) None ¶
Called at the end of predicting.
- Parameters
results (List[Any]) –
- Return type
None
- on_predict_epoch_start() None ¶
Called at the beginning of predicting.
- Return type
None
- on_predict_model_eval() None ¶
Sets the model to eval during the predict loop.
- Return type
None
- on_predict_start() None ¶
Called at the beginning of predicting.
- Return type
None
- on_save_checkpoint(checkpoint: Dict[str, Any]) None ¶
Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
- Parameters
checkpoint (Dict[str, Any]) – The full checkpoint dictionary before it gets dumped to a file. Implementations of this hook can insert additional data into this dictionary.
- Return type
None
Example:
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- on_test_batch_end(outputs: Optional[Union[torch.Tensor, Dict[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the test loop after the batch.
- Parameters
outputs (Optional[Union[torch.Tensor, Dict[str, Any]]]) – The outputs of test_step_end(test_step(x))
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_test_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the test loop before anything happens for that batch.
- Parameters
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_test_end() None ¶
Called at the end of testing.
- Return type
None
- on_test_epoch_end() None ¶
Called in the test loop at the very end of the epoch.
- Return type
None
- on_test_epoch_start() None ¶
Called in the test loop at the very beginning of the epoch.
- Return type
None
- on_test_model_eval() None ¶
Sets the model to eval during the test loop.
- Return type
None
- on_test_model_train() None ¶
Sets the model to train during the test loop.
- Return type
None
- on_test_start() None ¶
Called at the beginning of testing.
- Return type
None
- on_train_batch_end(outputs: Union[torch.Tensor, Dict[str, Any]], batch: Any, batch_idx: int) None ¶
Called in the training loop after the batch.
- Parameters
outputs (Union[torch.Tensor, Dict[str, Any]]) – The outputs of training_step_end(training_step(x))
batch (Any) – The batched data as it is returned by the training DataLoader.
batch_idx (int) – the index of the batch
- Return type
None
- on_train_batch_start(batch: Any, batch_idx: int) Optional[int] ¶
Called in the training loop before anything happens for that batch.
If you return -1 here, you will skip training for the rest of the current epoch.
- Parameters
batch (Any) – The batched data as it is returned by the training DataLoader.
batch_idx (int) – the index of the batch
- Return type
Optional[int]
- on_train_end() None ¶
Called at the end of training before logger experiment is closed.
- Return type
None
- on_train_epoch_end() None ¶
Called in the training loop at the very end of the epoch.
To access all batch outputs at the end of the epoch, either:
Implement training_epoch_end in the LightningModule OR
Cache data across steps on the attribute(s) of the LightningModule and access them in this hook
- Return type
None
- on_train_epoch_start() None ¶
Called in the training loop at the very beginning of the epoch.
- Return type
None
- on_train_start() None ¶
Called at the beginning of training after sanity check.
- Return type
None
- on_validation_batch_end(outputs: Optional[Union[torch.Tensor, Dict[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the validation loop after the batch.
- Parameters
outputs (Optional[Union[torch.Tensor, Dict[str, Any]]]) – The outputs of validation_step_end(validation_step(x))
batch (Any) – The batched data as it is returned by the validation DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_validation_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the validation loop before anything happens for that batch.
- Parameters
batch (Any) – The batched data as it is returned by the validation DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_validation_end() None ¶
Called at the end of validation.
- Return type
None
- on_validation_epoch_end() None ¶
Called in the validation loop at the very end of the epoch.
- Return type
None
- on_validation_epoch_start() None ¶
Called in the validation loop at the very beginning of the epoch.
- Return type
None
- on_validation_model_eval() None ¶
Sets the model to eval during the val loop.
- Return type
None
- on_validation_model_train() None ¶
Sets the model to train during the val loop.
- Return type
None
- on_validation_start() None ¶
Called at the beginning of validation.
- Return type
None
- optimizer_step(epoch: int, batch_idx: int, optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int = 0, optimizer_closure: Optional[Callable[[], Any]] = None, on_tpu: bool = False, using_lbfgs: bool = False) None ¶
Override this method to adjust the default way the
Trainer
calls each optimizer.By default, Lightning calls
step()
andzero_grad()
as shown in the example once per optimizer. This method (andzero_grad()
) won’t be called during the accumulation phase whenTrainer(accumulate_grad_batches != 1)
. Overriding this hook has no benefit with manual optimization.- Parameters
epoch (int) – Current epoch
batch_idx (int) – Index of current batch
optimizer (Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer]) – A PyTorch optimizer
optimizer_idx (int) – If you used multiple optimizers, this indexes into that list.
optimizer_closure (Optional[Callable[[], Any]]) – The optimizer closure. This closure must be executed as it includes the calls to
training_step()
,optimizer.zero_grad()
, andbackward()
.on_tpu (bool) –
True
if TPU backward is requiredusing_lbfgs (bool) – True if the matching optimizer is
torch.optim.LBFGS
- Return type
None
Examples:
# DEFAULT def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs): optimizer.step(closure=optimizer_closure) # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs): # update generator opt every step if optimizer_idx == 0: optimizer.step(closure=optimizer_closure) # update discriminator opt every 2 steps if optimizer_idx == 1: if (batch_idx + 1) % 2 == 0 : optimizer.step(closure=optimizer_closure) else: # call the closure by itself to run `training_step` + `backward` without an optimizer step optimizer_closure() # ... # add as many optimizers as you want
Here’s another example showing how to use this for more advanced things such as learning rate warm-up:
# learning rate warm-up def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs, ): # update params optimizer.step(closure=optimizer_closure) # manually warm up lr without a scheduler if self.trainer.global_step < 500: lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0) for pg in optimizer.param_groups: pg["lr"] = lr_scale * self.learning_rate
- optimizer_zero_grad(epoch: int, batch_idx: int, optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int) None ¶
Override this method to change the default behaviour of
optimizer.zero_grad()
.- Parameters
epoch (int) – Current epoch
batch_idx (int) – Index of current batch
optimizer (torch.optim.optimizer.Optimizer) – A PyTorch optimizer
optimizer_idx (int) – If you used multiple optimizers this indexes into that list.
- Return type
None
Examples:
# DEFAULT def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad() # Set gradients to `None` instead of zero to improve performance (not required on `torch>=2.0.0`). def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad(set_to_none=True)
See
torch.optim.Optimizer.zero_grad()
for the explanation of the above example.
- optimizers(use_pl_optimizer: bool = True) Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, lightning_fabric.wrappers._FabricOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer], List[lightning_fabric.wrappers._FabricOptimizer]] ¶
Returns the optimizer(s) that are being used during training. Useful for manual optimization.
- Parameters
use_pl_optimizer (bool) – If
True
, will wrap the optimizer(s) in aLightningOptimizer
for automatic handling of precision and profiling.- Returns
A single optimizer, or a list of optimizers in case multiple ones are present.
- Return type
Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, lightning_fabric.wrappers._FabricOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer], List[lightning_fabric.wrappers._FabricOptimizer]]
- parameters(recurse: bool = True) Iterator[torch.nn.parameter.Parameter] ¶
Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
- Return type
Iterator[torch.nn.parameter.Parameter]
Example:
>>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- predict_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] ¶
Implement one or multiple PyTorch DataLoaders for prediction.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.predict()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying prediction samples.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]]
Note
In the case where you return multiple prediction dataloaders, the
predict_step()
will have an argumentdataloader_idx
which matches the order here.
- predict_step(batch: Any, batch_idx: int, dataloader_idx: int = 0) Any ¶
Step function called during
predict()
. By default, it callsforward()
. Override to add any processing logic.The
predict_step()
is used to scale inference on multi-devices.To prevent an OOM error, it is possible to use
BasePredictionWriter
callback to write the predictions to disk or database after each batch or on epoch end.The
BasePredictionWriter
should be used while using a spawn based accelerator. This happens forTrainer(strategy="ddp_spawn")
or training on 8 TPU cores withTrainer(accelerator="tpu", devices=8)
as predictions won’t be returned.Example
class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm)
- Parameters
batch (Any) – Current batch.
batch_idx (int) – Index of current batch.
dataloader_idx (int) – Index of the current dataloader.
- Returns
Predicted output
- Return type
Any
- prepare_data() None ¶
Use this to download and prepare data. Downloading and saving data with multiple processes (distributed settings) will result in corrupted data. Lightning ensures this method is called only within a single process, so you can safely add your downloading logic within.
Warning
DO NOT set state to the model (use
setup
instead) since this is NOT called on every deviceExample:
def prepare_data(self): # good download_data() tokenize() etc() # bad self.split = data_split self.some_state = some_other_state()
In a distributed environment,
prepare_data
can be called in two ways (using prepare_data_per_node)Once per node. This is the default and is only called on LOCAL_RANK=0.
Once in total. Only called on GLOBAL_RANK=0.
Example:
# DEFAULT # called once per node on LOCAL_RANK=0 of that node class LitDataModule(LightningDataModule): def __init__(self): super().__init__() self.prepare_data_per_node = True # call on GLOBAL_RANK=0 (great for shared file systems) class LitDataModule(LightningDataModule): def __init__(self): super().__init__() self.prepare_data_per_node = False
This is called before requesting the dataloaders:
model.prepare_data() initialize_distributed() model.setup(stage) model.train_dataloader() model.val_dataloader() model.test_dataloader() model.predict_dataloader()
- Return type
None
- print(*args: Any, **kwargs: Any) None ¶
Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
*args – The thing to print. The same as for Python’s built-in print function.
**kwargs – The same as for Python’s built-in print function.
args (Any) –
kwargs (Any) –
- Return type
None
Example:
def forward(self, x): self.print(x, 'in forward')
- register_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle ¶
Registers a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) –
- register_buffer(name: str, tensor: Optional[torch.Tensor], persistent: bool = True) None ¶
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters
name (string) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
- Return type
None
Example:
>>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle ¶
Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[...], None]) –
- register_forward_pre_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle ¶
Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[...], None]) –
- register_full_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle ¶
Registers a backward hook on the module.
The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) –
- register_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Alias for
add_module()
.- Parameters
name (str) –
module (Optional[torch.nn.modules.module.Module]) –
- Return type
None
- register_parameter(name: str, param: Optional[torch.nn.parameter.Parameter]) None ¶
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (string) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- Return type
None
- requires_grad_(requires_grad: bool = True) torch.nn.modules.module.T ¶
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- save_hyperparameters(*args: Any, ignore: Optional[Union[Sequence[str], str]] = None, frame: Optional[frame] = None, logger: bool = True) None ¶
Save arguments to
hparams
attribute.- Parameters
args (Any) – single object of dict, NameSpace or OmegaConf or string names or arguments from class
__init__
ignore (Optional[Union[Sequence[str], str]]) – an argument name or a list of argument names from class
__init__
to be ignoredframe (Optional[frame]) – a frame object. Default is None
logger (bool) – Whether to send the hyperparameters to the logger. Default: True
- Return type
None
- Example::
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # manually assign arguments ... self.save_hyperparameters('arg1', 'arg3') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class AutomaticArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # equivalent automatic ... self.save_hyperparameters() ... def forward(self, *args, **kwargs): ... ... >>> model = AutomaticArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg2": abc "arg3": 3.14
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class SingleArgModel(HyperparametersMixin): ... def __init__(self, params): ... super().__init__() ... # manually assign single argument ... self.save_hyperparameters(params) ... def forward(self, *args, **kwargs): ... ... >>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14)) >>> model.hparams "p1": 1 "p2": abc "p3": 3.14
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # pass argument(s) to ignore as a string or in a list ... self.save_hyperparameters(ignore='arg2') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
- set_extra_state(state: Any)¶
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters
state (dict) – Extra state from the state_dict
- setup(stage: str) None ¶
Called at the beginning of fit (train + validate), validate, test, or predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.
- Parameters
stage (str) – either
'fit'
,'validate'
,'test'
, or'predict'
- Return type
None
Example:
class LitModel(...): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() # don't do this self.something = else def setup(self, stage): data = load_data(...) self.l1 = nn.Linear(28, data.num_classes)
See
torch.Tensor.share_memory_()
- Parameters
self (torch.nn.modules.module.T) –
- Return type
torch.nn.modules.module.T
- state_dict(destination=None, prefix='', keep_vars=False)¶
Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.- Returns
a dictionary containing a whole state of the module
- Return type
dict
Example:
>>> module.state_dict().keys() ['bias', 'weight']
- step(batch: etna.models.nn.nbeats.nets.NBeatsBatch, *args, **kwargs)[source]¶
Step for loss computation for training or validation.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
loss, true_target, prediction_target
- tbptt_split_batch(batch: Any, split_size: int) List[Any] ¶
When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.
- Parameters
batch (Any) – Current batch
split_size (int) – The size of the split
- Returns
List of batch splits. Each split will be passed to
training_step()
to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.- Return type
List[Any]
Examples:
def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.abc.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits
Note
Called in the training loop after
on_train_batch_start()
if :paramref:`~pytorch_lightning.core.module.LightningModule.truncated_bptt_steps` > 0. Each returned batch split is passed separately totraining_step()
.
- teardown(stage: str) None ¶
Called at the end of fit (train + validate), validate, test, or predict.
- Parameters
stage (str) – either
'fit'
,'validate'
,'test'
, or'predict'
- Return type
None
- test_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] ¶
Implement one or multiple PyTorch DataLoaders for testing.
For data processing use the following pattern:
download in
prepare_data()
process and split in
setup()
However, the above are only necessary for distributed processing.
Warning
do not assign state in prepare_data
test()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying testing samples.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]]
Example:
def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def test_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a test dataset and a
test_step()
, you don’t need to implement this method.Note
In the case where you return multiple test dataloaders, the
test_step()
will have an argumentdataloader_idx
which matches the order here.
- test_epoch_end(outputs: Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) None ¶
Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs (Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) – List of outputs you defined in
test_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
None
- Return type
None
Note
If you didn’t define a
test_step()
, this won’t be called.Examples
With a single dataloader:
def test_epoch_end(self, outputs): # do something with the outputs of all test batches all_test_preds = test_step_outputs.predictions some_result = calc_all_results(all_test_preds) self.log(some_result)
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): final_value = 0 for dataloader_outputs in outputs: for test_step_out in dataloader_outputs: # do something final_value += test_step_out self.log("final_metric", final_value)
- test_step(*args: Any, **kwargs: Any) Optional[Union[torch.Tensor, Dict[str, Any]]] ¶
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
batch – The output of your
DataLoader
.batch_idx – The index of this batch.
dataloader_id – The index of the dataloader that produced this batch. (only if multiple test dataloaders used).
args (Any) –
kwargs (Any) –
- Returns
Any of.
Any object or value
None
- Testing will skip to the next batch
- Return type
Optional[Union[torch.Tensor, Dict[str, Any]]]
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- test_step_end(*args: Any, **kwargs: Any) Optional[Union[torch.Tensor, Dict[str, Any]]] ¶
Use this when testing with DP because
test_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(step_output)
- Parameters
step_output – What you return in
test_step()
for each batch part.args (Any) –
kwargs (Any) –
- Returns
None or anything
- Return type
Optional[Union[torch.Tensor, Dict[str, Any]]]
# WITHOUT test_step_end # if used in DP, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) self.log("test_loss", loss) # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return out def test_step_end(self, output_results): # this out is now the full size of the batch all_test_step_outs = output_results.out loss = nce_loss(all_test_step_outs) self.log("test_loss", loss)
See also
See the Multi GPU Training guide for more details.
- to(*args: Any, **kwargs: Any) typing_extensions.Self ¶
See
torch.nn.Module.to()
.- Parameters
args (Any) –
kwargs (Any) –
- Return type
typing_extensions.Self
- to_empty(*, device: Union[str, torch.device]) torch.nn.modules.module.T ¶
Moves the parameters and buffers to the specified device without copying storage.
- Parameters
device (
torch.device
) – The desired device of the parameters and buffers in this module.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- to_onnx(file_path: Union[str, pathlib.Path], input_sample: Optional[Any] = None, **kwargs: Any) None ¶
Saves the model in ONNX format.
- Parameters
file_path (Union[str, pathlib.Path]) – The path of the file the onnx model should be saved to.
input_sample (Optional[Any]) – An input for tracing. Default: None (Use self.example_input_array)
**kwargs – Will be passed to torch.onnx.export function.
kwargs (Any) –
- Return type
None
class SimpleModel(LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(in_features=64, out_features=4) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1))) import os, tempfile model = SimpleModel() with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile: model.to_onnx(tmpfile.name, torch.randn((1, 64)), export_params=True) os.path.isfile(tmpfile.name)
- to_torchscript(file_path: Optional[Union[str, pathlib.Path]] = None, method: Optional[str] = 'script', example_inputs: Optional[Any] = None, **kwargs: Any) Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]] ¶
By default compiles the whole model to a
ScriptModule
. If you want to use tracing, please provided the argumentmethod='trace'
and make sure that either the example_inputs argument is provided, or the model hasexample_input_array
set. If you would like to customize the modules that are scripted you should override this method. In case you want to return multiple modules, we recommend using a dictionary.- Parameters
file_path (Optional[Union[str, pathlib.Path]]) – Path where to save the torchscript. Default: None (no file saved).
method (Optional[str]) – Whether to use TorchScript’s script or trace method. Default: ‘script’
example_inputs (Optional[Any]) – An input to be used to do tracing when method is set to ‘trace’. Default: None (uses
example_input_array
)**kwargs – Additional arguments that will be passed to the
torch.jit.script()
ortorch.jit.trace()
function.kwargs (Any) –
- Return type
Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]]
Note
Requires the implementation of the
forward()
method.The exported script will be set to evaluation mode.
It is recommended that you install the latest supported version of PyTorch to use this feature without limitations. See also the
torch.jit
documentation for supported features.
Example
>>> class SimpleModel(LightningModule): ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(in_features=64, out_features=4) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1))) ... >>> import os >>> model = SimpleModel() >>> model.to_torchscript(file_path="model.pt") >>> os.path.isfile("model.pt") >>> torch.jit.save(model.to_torchscript(file_path="model_trace.pt", method='trace', ... example_inputs=torch.randn(1, 64))) >>> os.path.isfile("model_trace.pt") True
- Returns
This LightningModule as a torchscript, regardless of whether file_path is defined or not.
- Parameters
file_path (Optional[Union[str, pathlib.Path]]) –
method (Optional[str]) –
example_inputs (Optional[Any]) –
kwargs (Any) –
- Return type
Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]]
- classmethod to_uncompiled(model: Union[pl.LightningModule, torch._dynamo.OptimizedModule]) pl.LightningModule ¶
Returns an instance of LightningModule without any compilation optimizations from a compiled model.
This takes either a
torch._dynamo.OptimizedModule
returned bytorch.compile()
or aLightningModule
returned byLightningModule.from_compiled
.Note: this method will in-place modify the
LightningModule
that is passed in.- Parameters
model (Union[pl.LightningModule, torch._dynamo.OptimizedModule]) –
- Return type
pl.LightningModule
- toggle_optimizer(optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int) None ¶
Makes sure only the gradients of the current optimizer’s parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.
This is only called automatically when automatic optimization is enabled and multiple optimizers are used. It works with
untoggle_optimizer()
to make sureparam_requires_grad_state
is properly reset.- Parameters
optimizer (Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer]) – The optimizer to toggle.
optimizer_idx (int) – The index of the optimizer to toggle.
- Return type
None
- train(mode: bool = True) torch.nn.modules.module.T ¶
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- train_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader], Sequence[Sequence[torch.utils.data.dataloader.DataLoader]], Sequence[Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, torch.utils.data.dataloader.DataLoader], Dict[str, Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, Sequence[torch.utils.data.dataloader.DataLoader]]] ¶
Implement one or more PyTorch DataLoaders for training.
- Returns
A collection of
torch.utils.data.DataLoader
specifying training samples. In the case of multiple dataloaders, please see this section.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader], Sequence[Sequence[torch.utils.data.dataloader.DataLoader]], Sequence[Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, torch.utils.data.dataloader.DataLoader], Dict[str, Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, Sequence[torch.utils.data.dataloader.DataLoader]]]
The dataloader you return will not be reloaded unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.
For data processing use the following pattern:
download in
prepare_data()
process and split in
setup()
However, the above are only necessary for distributed processing.
Warning
do not assign state in prepare_data
fit()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example:
# single dataloader def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=True ) return loader # multiple dataloaders, return as list def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a list of tensors: [batch_mnist, batch_cifar] return [mnist_loader, cifar_loader] # multiple dataloader, return as dict def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a dict of tensors: {'mnist': batch_mnist, 'cifar': batch_cifar} return {'mnist': mnist_loader, 'cifar': cifar_loader}
- training_epoch_end(outputs: List[Union[torch.Tensor, Dict[str, Any]]]) None ¶
Called at the end of the training epoch with the outputs of all training steps. Use this in case you need to do something with all the outputs returned by
training_step()
.# the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs)
- Parameters
outputs (List[Union[torch.Tensor, Dict[str, Any]]]) – List of outputs you defined in
training_step()
. If there are multiple optimizers or when usingtruncated_bptt_steps > 0
, the lists have the dimensions (n_batches, tbptt_steps, n_optimizers). Dimensions of length 1 are squeezed.- Returns
None
- Return type
None
Note
If this method is not overridden, this won’t be called.
def training_epoch_end(self, training_step_outputs): # do something with all training_step outputs for out in training_step_outputs: ...
- training_step(batch: dict, *args, **kwargs)¶
Training step.
- Parameters
batch (dict) – batch of data
- Returns
loss
- training_step_end(step_output: Union[torch.Tensor, Dict[str, Any]]) Union[torch.Tensor, Dict[str, Any]] ¶
Use this when training with dp because
training_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(step_output)
- Parameters
step_output (Union[torch.Tensor, Dict[str, Any]]) – What you return in training_step for each batch part.
- Returns
Anything
- Return type
Union[torch.Tensor, Dict[str, Any]]
When using the DP strategy, only a portion of the batch is inside the training_step:
def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) # softmax uses only a portion of the batch in the denominator loss = self.softmax(out) loss = nce_loss(loss) return loss
If you wish to do something with all the parts of the batch, then use this method to do it:
def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return {"pred": out} def training_step_end(self, training_step_outputs): gpu_0_pred = training_step_outputs[0]["pred"] gpu_1_pred = training_step_outputs[1]["pred"] gpu_n_pred = training_step_outputs[n]["pred"] # this softmax now uses the full batch loss = nce_loss([gpu_0_pred, gpu_1_pred, gpu_n_pred]) return loss
See also
See the Multi GPU Training guide for more details.
- transfer_batch_to_device(batch: Any, device: torch.device, dataloader_idx: int) Any ¶
Override this hook if your
DataLoader
returns tensors wrapped in a custom data structure.The data types listed below (and any arbitrary nesting of them) are supported out of the box:
torch.Tensor
or anything that implements .to(…)list
dict
tuple
For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, …).
Note
This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch (Any) – A batch of data that needs to be transferred to a new device.
device (torch.device) – The target device as defined in PyTorch.
dataloader_idx (int) – The index of the dataloader to which the batch belongs.
- Returns
A reference to the data on the new device.
- Return type
Any
Example:
def transfer_batch_to_device(self, batch, device, dataloader_idx): if isinstance(batch, CustomBatch): # move all tensors in your custom data structure to the device batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) elif dataloader_idx == 0: # skip device transfer for the first dataloader or anything you wish pass else: batch = super().transfer_batch_to_device(batch, device, dataloader_idx) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.MisconfigurationException – If using IPUs,
Trainer(accelerator='ipu')
.
- Parameters
batch (Any) –
device (torch.device) –
dataloader_idx (int) –
- Return type
Any
See also
move_data_to_device()
apply_to_collection()
- type(dst_type: Union[str, torch.dtype]) typing_extensions.Self ¶
-
- Parameters
dst_type (Union[str, torch.dtype]) –
- Return type
typing_extensions.Self
- unfreeze() None ¶
Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- Return type
None
- untoggle_optimizer(optimizer_idx: int) None ¶
Resets the state of required gradients that were toggled with
toggle_optimizer()
.This is only called automatically when automatic optimization is enabled and multiple optimizers are used.
- Parameters
optimizer_idx (int) – The index of the optimizer to untoggle.
- Return type
None
- val_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] ¶
Implement one or multiple PyTorch DataLoaders for validation.
The dataloader you return will not be reloaded unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.fit()
validate()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying validation samples.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]]
Examples:
def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a validation dataset and a
validation_step()
, you don’t need to implement this method.Note
In the case where you return multiple validation dataloaders, the
validation_step()
will have an argumentdataloader_idx
which matches the order here.
- validation_epoch_end(outputs: Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) None ¶
Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs (Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) – List of outputs you defined in
validation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Returns
None
- Return type
None
Note
If you didn’t define a
validation_step()
, this won’t be called.Examples
With a single dataloader:
def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: ...
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log("final_metric", final_value)
- validation_step(batch: dict, *args, **kwargs)¶
Validate step.
- Parameters
batch (dict) – batch of data
- Returns
loss
- validation_step_end(*args: Any, **kwargs: Any) Optional[Union[torch.Tensor, Dict[str, Any]]] ¶
Use this when validating with dp because
validation_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(step_output)
- Parameters
step_output – What you return in
validation_step()
for each batch part.args (Any) –
kwargs (Any) –
- Returns
None or anything
- Return type
Optional[Union[torch.Tensor, Dict[str, Any]]]
# WITHOUT validation_step_end # if used in DP, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) loss = self.softmax(out) loss = nce_loss(loss) self.log("val_loss", loss) # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return out def validation_step_end(self, val_step_outputs): for out in val_step_outputs: ...
See also
See the Multi GPU Training guide for more details.
- xpu(device: Optional[Union[torch.device, int]] = None) torch.nn.modules.module.T ¶
Moves all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- zero_grad(set_to_none: bool = False) None ¶
Sets gradients of all model parameters to zero. See similar function under
torch.optim.Optimizer
for more context.- Parameters
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.- Return type
None
- property automatic_optimization: bool¶
If set to
False
you are responsible for calling.backward()
,.step()
,.zero_grad()
.
- property current_epoch: int¶
The current epoch in the
Trainer
, or 0 if not attached.
- property example_input_array: Optional[Union[torch.Tensor, Tuple, Dict]]¶
The example input array is a specification of what the module can consume in the
forward()
method. The return type is interpreted as follows:Single tensor: It is assumed the model takes a single argument, i.e.,
model.forward(model.example_input_array)
Tuple: The input array should be interpreted as a sequence of positional arguments, i.e.,
model.forward(*model.example_input_array)
Dict: The input array represents named keyword arguments, i.e.,
model.forward(**model.example_input_array)
- property global_rank: int¶
The index of the current process across all nodes and devices.
- property global_step: int¶
Total training batches seen across all epochs.
If no Trainer is attached, this propery is 0.
- property hparams: Union[pytorch_lightning.utilities.parsing.AttributeDict, MutableMapping]¶
The collection of hyperparameters saved with
save_hyperparameters()
. It is mutable by the user. For the frozen set of initial hyperparameters, usehparams_initial
.- Returns
Mutable hyperparameters dictionary
- property hparams_initial: pytorch_lightning.utilities.parsing.AttributeDict¶
The collection of hyperparameters saved with
save_hyperparameters()
. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed throughhparams
.- Returns
immutable initial hyperparameters
- Return type
AttributeDict
- property local_rank: int¶
The index of the current process within a single node.
- property logger: Optional[Union[pytorch_lightning.loggers.logger.Logger, lightning_fabric.loggers.logger.Logger]]¶
Reference to the logger object in the Trainer.
- property loggers: Union[List[pytorch_lightning.loggers.logger.Logger], List[lightning_fabric.loggers.logger.Logger]]¶
Reference to the list of loggers in the Trainer.
- property on_gpu: bool¶
Returns
True
if this model is currently located on a GPU.Useful to set flags around the LightningModule for different CPU vs GPU behavior.
- property truncated_bptt_steps: int¶
Enables Truncated Backpropagation Through Time in the Trainer when set to a positive integer.
It represents the number of times
training_step()
gets called before backpropagation. If this is > 0, thetraining_step()
receives an additional argumenthiddens
and is expected to return a hidden state.
- class NBeatsBatch(_typename, _fields=None, /, **kwargs)[source]¶
Batch specification for N-BEATS.
- clear() None. Remove all items from D. ¶
- copy() a shallow copy of D ¶
- fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
- get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items ¶
- keys() a set-like object providing a view on D's keys ¶
- pop(k[, d]) v, remove specified key and return the corresponding value. ¶
If key is not found, d is returned if given, otherwise KeyError is raised
- popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
- setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F. ¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values ¶
- class NBeatsGenericNet(input_size: int, output_size: int, loss: torch.nn.modules.module.Module, stacks: int, layers: int, layer_size: int, lr: float, optimizer_params: Optional[Dict[str, Any]] = None)[source]¶
N-BEATS generic model.
Initialize N-BEATS model.
- Parameters
input_size (int) – Input data size.
output_size (int) – Forecast size.
loss (nn.Module) – Optimisation objective. The loss function should accept three arguments:
y_true
,y_pred
andmask
. The last parameter is a binary mask that denotes which points are valid forecasts.stacks (int) – Number of block stacks in model.
layers (int) – Number of inner layers in each block.
layer_size (int) – Inner layers size in blocks.
lr (float) – Optimizer learning rate.
optimizer_params (Optional[Dict[str, Any]]) – Additional parameters for the optimizer.
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (string) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- Return type
None
- all_gather(data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False) Union[torch.Tensor, Dict, List, Tuple] ¶
Allows users to call
self.all_gather()
from the LightningModule, thus making theall_gather
operation accelerator agnostic.all_gather
is a function provided by accelerators to gather a tensor from several distributed processes.- Parameters
data (Union[torch.Tensor, Dict, List, Tuple]) – int, float, tensor of shape (batch, …), or a (possibly nested) collection thereof.
group (Optional[Any]) – the process group to gather results from. Defaults to all processes (world)
sync_grads (bool) – flag that allows users to synchronize gradients for the all_gather operation
- Returns
A tensor of shape (world_size, batch, …), or if the input was a collection the output will also be a collection with tensors of this shape.
- Return type
Union[torch.Tensor, Dict, List, Tuple]
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T ¶
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).- Parameters
fn (
Module
-> None) – function to be applied to each submoduleself (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- backward(loss: torch.Tensor, optimizer: Optional[lightning_fabric.utilities.types.Steppable], optimizer_idx: Optional[int], *args: Any, **kwargs: Any) None ¶
Called to perform backward on the loss returned in
training_step()
. Override this hook with your own implementation if you need to.- Parameters
loss (torch.Tensor) – The loss tensor returned by
training_step()
. If gradient accumulation is used, the loss here holds the normalized value (scaled by 1 / accumulation steps).optimizer (Optional[lightning_fabric.utilities.types.Steppable]) – Current optimizer being used.
None
if using manual optimization.optimizer_idx (Optional[int]) – Index of the current optimizer being used.
None
if using manual optimization.args (Any) –
kwargs (Any) –
- Return type
None
Example:
def backward(self, loss, optimizer, optimizer_idx): loss.backward()
- bfloat16() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- buffers(recurse: bool = True) Iterator[torch.Tensor] ¶
Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
- Return type
Iterator[torch.Tensor]
Example:
>>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over immediate children modules.
- Yields
Module – a child module
- Return type
Iterator[torch.nn.modules.module.Module]
- clip_gradients(optimizer: torch.optim.optimizer.Optimizer, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None) None ¶
Handles gradient clipping internally.
Note
Do not override this method. If you want to customize gradient clipping, consider using
configure_gradient_clipping()
method.For manual optimization (
self.automatic_optimization = False
), if you want to use gradient clipping, consider callingself.clip_gradients(opt, gradient_clip_val=0.5, gradient_clip_algorithm="norm")
manually in the training step.
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
gradient_clip_val (Optional[Union[int, float]]) – The value at which to clip gradients.
gradient_clip_algorithm (Optional[str]) – The gradient clipping algorithm to use. Pass
gradient_clip_algorithm="value"
to clip by value, andgradient_clip_algorithm="norm"
to clip by norm.
- Return type
None
- configure_callbacks() Union[Sequence[pytorch_lightning.callbacks.callback.Callback], pytorch_lightning.callbacks.callback.Callback] ¶
Configure model-specific callbacks. When the model gets attached, e.g., when
.fit()
or.test()
gets called, the list or a callback returned here will be merged with the list of callbacks passed to the Trainer’scallbacks
argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer’s callbacks list, it will take priority and replace them. In addition, Lightning will make sureModelCheckpoint
callbacks run last.- Returns
A callback or a list of callbacks which will extend the list of callbacks in the Trainer.
- Return type
Union[Sequence[pytorch_lightning.callbacks.callback.Callback], pytorch_lightning.callbacks.callback.Callback]
Example:
def configure_callbacks(self): early_stop = EarlyStopping(monitor="val_acc", mode="max") checkpoint = ModelCheckpoint(monitor="val_loss") return [early_stop, checkpoint]
- configure_gradient_clipping(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None) None ¶
Perform gradient clipping for the optimizer parameters. Called before
optimizer_step()
.- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
optimizer_idx (int) – Index of the current optimizer being used.
gradient_clip_val (Optional[Union[int, float]]) – The value at which to clip gradients. By default value passed in Trainer will be available here.
gradient_clip_algorithm (Optional[str]) – The gradient clipping algorithm to use. By default value passed in Trainer will be available here.
- Return type
None
Example:
# Perform gradient clipping on gradients associated with discriminator (optimizer_idx=1) in GAN def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): if optimizer_idx == 1: # Lightning will handle the gradient clipping self.clip_gradients( optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm ) else: # implement your own custom logic to clip gradients for generator (optimizer_idx=0)
- configure_optimizers() Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]] ¶
Optimizer configuration.
- Return type
Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]]
- configure_sharded_model() None ¶
Hook to create modules in a distributed aware context. This is useful for when using sharded plugins, where we’d like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time.
This hook is called during each of fit/val/test/predict stages in the same process, so ensure that implementation of this hook is idempotent.
- Return type
None
- cpu() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- cuda(device: Optional[Union[torch.device, int]] = None) typing_extensions.Self ¶
Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
- Parameters
device (Optional[Union[torch.device, int]]) – If specified, all parameters will be copied to that device. If None, the current CUDA device index will be used.
- Returns
self
- Return type
Module
- double() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- eval() torch.nn.modules.module.T ¶
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- extra_repr() str ¶
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- Return type
str
- float() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- forward(batch: etna.models.nn.nbeats.nets.NBeatsBatch) torch.Tensor ¶
Forward pass.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
Prediction data.
- Return type
- freeze() None ¶
Freeze all params for inference.
Example:
model = MyLightningModule(...) model.freeze()
- Return type
None
- classmethod from_compiled(model: torch._dynamo.OptimizedModule) pl.LightningModule ¶
Returns an instance LightningModule from the output of
torch.compile
.The
torch.compile
function returns atorch._dynamo.OptimizedModule
, which wraps the LightningModule passed in as an argument, but doesn’t inherit from it. This means that the output oftorch.compile
behaves like a LightningModule but it doesn’t inherit from it (i.e. isinstance will fail).Use this method to obtain a LightningModule that still runs with all the optimizations from
torch.compile
.- Parameters
model (torch._dynamo.OptimizedModule) –
- Return type
pl.LightningModule
- get_buffer(target: str) torch.Tensor ¶
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The buffer referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any ¶
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns
Any extra state to store in the module’s state_dict
- Return type
object
- get_parameter(target: str) torch.nn.parameter.Parameter ¶
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The Parameter referenced by
target
- Return type
torch.nn.Parameter
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) torch.nn.modules.module.Module ¶
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters
target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns
The submodule referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- classmethod load_from_checkpoint(checkpoint_path: Union[str, pathlib.Path, IO], map_location: Optional[Union[torch.device, str, int, Callable[[Union[torch.device, str, int]], Union[torch.device, str, int]], Dict[Union[torch.device, str, int], Union[torch.device, str, int]]]] = None, hparams_file: Optional[Union[str, pathlib.Path]] = None, strict: bool = True, **kwargs: Any) typing_extensions.Self ¶
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"hyper_parameters"
.- Parameters
checkpoint_path (Union[str, pathlib.Path, IO]) – Path to checkpoint. This can also be a URL, or file-like object
map_location (Optional[Union[torch.device, str, int, Callable[[Union[torch.device, str, int]], Union[torch.device, str, int]], Dict[Union[torch.device, str, int], Union[torch.device, str, int]]]]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as in
torch.load()
.hparams_file (Optional[Union[str, pathlib.Path]]) –
Optional path to a
.yaml
or.csv
file with hierarchical structure as in this example:drop_prob: 0.2 dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a
.yaml
file with the hparams you’d like to use. These will be converted into adict
and passed into yourLightningModule
for use.If your model’s
hparams
argument isNamespace
and.yaml
file has hierarchical structure, you need to refactor your model to treathparams
asdict
.strict (bool) – Whether to strictly enforce that the keys in
checkpoint_path
match the keys returned by this module’s state dict.**kwargs – Any extra keyword args needed to init the model. Can also be used to override saved hyperparameter values.
kwargs (Any) –
- Returns
LightningModule
instance with loaded weights and hyperparameters (if available).- Return type
typing_extensions.Self
Note
load_from_checkpoint
is a class method. You should use yourLightningModule
class to call it instead of theLightningModule
instance.Example:
# load weights without mapping ... model = MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values model = MyLightningModule.load_from_checkpoint( PATH, num_layers=128, pretrained_ckpt_path=NEW_PATH, ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
- load_state_dict(state_dict: OrderedDict[str, Tensor], strict: bool = True)¶
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- log(name: str, value: Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]], prog_bar: bool = False, logger: Optional[bool] = None, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, metric_attribute: Optional[str] = None, rank_zero_only: bool = False) None ¶
Log a key, value pair.
Example:
self.log('train_loss', loss)
The default behavior per hook is documented here: Automatic Logging.
- Parameters
name (str) – key to log.
value (Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]) – value to log. Can be a
float
,Tensor
,Metric
, or a dictionary of the former.prog_bar (bool) – if
True
logs to the progress bar.logger (Optional[bool]) – if
True
logs to the logger.on_step (Optional[bool]) – if
True
logs at this step. The default value is determined by the hook. See Automatic Logging for details.on_epoch (Optional[bool]) – if
True
logs epoch accumulated metrics. The default value is determined by the hook. See Automatic Logging for details.reduce_fx (Union[str, Callable]) – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph (bool) – if
True
, will not auto detach the graph.sync_dist (bool) – if
True
, reduces the metric across devices. Use with care as this may lead to a significant communication overhead.sync_dist_group (Optional[Any]) – the DDP group to sync across.
add_dataloader_idx (bool) – if
True
, appends the index of the current dataloader to the name (when using multiple dataloaders). If False, user needs to give unique names for each dataloader to not mix the values.batch_size (Optional[int]) – Current batch_size. This will be directly inferred from the loaded batch, but for some data structures you might need to explicitly provide it.
metric_attribute (Optional[str]) – To restore the metric state, Lightning requires the reference of the
torchmetrics.Metric
in your model. This is found automatically if it is a model attribute.rank_zero_only (bool) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
None
- log_dict(dictionary: Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]], prog_bar: bool = False, logger: Optional[bool] = None, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, rank_zero_only: bool = False) None ¶
Log a dictionary of values at once.
Example:
values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} self.log_dict(values)
- Parameters
dictionary (Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]]) – key value pairs. The values can be a
float
,Tensor
,Metric
, a dictionary of the former or aMetricCollection
.prog_bar (bool) – if
True
logs to the progress base.logger (Optional[bool]) – if
True
logs to the logger.on_step (Optional[bool]) – if
True
logs at this step.None
auto-logs for training_step but not validation/test_step. The default value is determined by the hook. See Automatic Logging for details.on_epoch (Optional[bool]) – if
True
logs epoch accumulated metrics.None
auto-logs for val/test step but nottraining_step
. The default value is determined by the hook. See Automatic Logging for details.reduce_fx (Union[str, Callable]) – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph (bool) – if
True
, will not auto-detach the graphsync_dist (bool) – if
True
, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.sync_dist_group (Optional[Any]) – the ddp group to sync across.
add_dataloader_idx (bool) – if
True
, appends the index of the current dataloader to the name (when using multiple). IfFalse
, user needs to give unique names for each dataloader to not mix values.batch_size (Optional[int]) – Current batch size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.
rank_zero_only (bool) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
None
- log_grad_norm(grad_norm_dict: Dict[str, float]) None ¶
Override this method to change the default behaviour of
log_grad_norm
.If clipping gradients, the gradients will not have been clipped yet.
- Parameters
grad_norm_dict (Dict[str, float]) – Dictionary containing current grad norm metrics
- Return type
None
Example:
# DEFAULT def log_grad_norm(self, grad_norm_dict): self.log_dict(grad_norm_dict, on_step=True, on_epoch=True, prog_bar=False, logger=True)
- lr_scheduler_step(scheduler: Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau], optimizer_idx: int, metric: Optional[Any]) None ¶
Override this method to adjust the default way the
Trainer
calls each scheduler. By default, Lightning callsstep()
and as shown in the example for each scheduler based on itsinterval
.- Parameters
scheduler (Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau]) – Learning rate scheduler.
optimizer_idx (int) – Index of the optimizer associated with this scheduler.
metric (Optional[Any]) – Value of the monitor used for schedulers like
ReduceLROnPlateau
.
- Return type
None
Examples:
# DEFAULT def lr_scheduler_step(self, scheduler, optimizer_idx, metric): if metric is None: scheduler.step() else: scheduler.step(metric) # Alternative way to update schedulers if it requires an epoch value def lr_scheduler_step(self, scheduler, optimizer_idx, metric): scheduler.step(epoch=self.current_epoch)
- lr_schedulers() Union[None, List[Union[lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau]], lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau] ¶
Returns the learning rate scheduler(s) that are being used during training. Useful for manual optimization.
- Returns
A single scheduler, or a list of schedulers in case multiple ones are present, or
None
if no schedulers were returned inconfigure_optimizers()
.- Return type
Union[None, List[Union[lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau]], lightning_fabric.utilities.types.LRScheduler, lightning_fabric.utilities.types.ReduceLROnPlateau]
- make_samples(df: pandas.core.frame.DataFrame, encoder_length: int, decoder_length: int) Iterable[dict] ¶
Make samples from segment DataFrame.
- Parameters
df (pandas.core.frame.DataFrame) –
encoder_length (int) –
decoder_length (int) –
- Return type
Iterable[dict]
- manual_backward(loss: torch.Tensor, *args: Any, **kwargs: Any) None ¶
Call this directly from your
training_step()
when doing optimizations manually. By using this, Lightning can ensure that all the proper scaling gets applied when using mixed precision.See manual optimization for more examples.
Example:
def training_step(...): opt = self.optimizers() loss = ... opt.zero_grad() # automatically applies scaling, etc... self.manual_backward(loss) opt.step()
- Parameters
loss (torch.Tensor) – The tensor on which to compute gradients. Must have a graph attached.
*args – Additional positional arguments to be forwarded to
backward()
**kwargs – Additional keyword arguments to be forwarded to
backward()
args (Any) –
kwargs (Any) –
- Return type
None
- modules() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
- Return type
Iterator[torch.nn.modules.module.Module]
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.Tensor]] ¶
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
prefix (str) – prefix to prepend to all buffer names.
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
(string, torch.Tensor) – Tuple containing the name and buffer
- Return type
Iterator[Tuple[str, torch.Tensor]]
Example:
>>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, torch.nn.modules.module.Module]] ¶
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple containing a name and child module
- Return type
Iterator[Tuple[str, torch.nn.modules.module.Module]]
Example:
>>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True)¶
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters
memo (Optional[Set[torch.nn.modules.module.Module]]) – a memo to store the set of modules already added to the result
prefix (str) – a prefix that will be added to the name of the module
remove_duplicate (bool) – whether to remove the duplicated module instances in the result or not
- Yields
(string, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.nn.parameter.Parameter]] ¶
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
(string, Parameter) – Tuple containing the name and parameter
- Return type
Iterator[Tuple[str, torch.nn.parameter.Parameter]]
Example:
>>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- on_after_backward() None ¶
Called after
loss.backward()
and before optimizers are stepped.Note
If using native AMP, the gradients will not be unscaled at this point. Use the
on_before_optimizer_step
if you need the unscaled gradients.- Return type
None
- on_after_batch_transfer(batch: Any, dataloader_idx: int) Any ¶
Override to alter or apply batch augmentations to your batch after it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch (Any) – A batch of data that needs to be altered or augmented.
dataloader_idx (int) – The index of the dataloader to which the batch belongs.
- Returns
A batch of data
- Return type
Any
Example:
def on_after_batch_transfer(self, batch, dataloader_idx): batch['x'] = gpu_transforms(batch['x']) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.MisconfigurationException – If using IPUs,
Trainer(accelerator='ipu')
.
- Parameters
batch (Any) –
dataloader_idx (int) –
- Return type
Any
- on_before_backward(loss: torch.Tensor) None ¶
Called before
loss.backward()
.- Parameters
loss (torch.Tensor) – Loss divided by number of batches for gradient accumulation and scaled if using native AMP.
- Return type
None
- on_before_batch_transfer(batch: Any, dataloader_idx: int) Any ¶
Override to alter or apply batch augmentations to your batch before it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch (Any) – A batch of data that needs to be altered or augmented.
dataloader_idx (int) – The index of the dataloader to which the batch belongs.
- Returns
A batch of data
- Return type
Any
Example:
def on_before_batch_transfer(self, batch, dataloader_idx): batch['x'] = transforms(batch['x']) return batch
- on_before_optimizer_step(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int) None ¶
Called before
optimizer.step()
.If using gradient accumulation, the hook is called once the gradients have been accumulated. See: :paramref:`~pytorch_lightning.trainer.Trainer.accumulate_grad_batches`.
If using native AMP, the loss will be unscaled before calling this hook. See these docs for more information on the scaling of gradients.
If clipping gradients, the gradients will not have been clipped yet.
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
optimizer_idx (int) – Index of the current optimizer being used.
- Return type
None
Example:
def on_before_optimizer_step(self, optimizer, optimizer_idx): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge for k, v in self.named_parameters(): self.logger.experiment.add_histogram( tag=k, values=v.grad, global_step=self.trainer.global_step )
- on_before_zero_grad(optimizer: torch.optim.optimizer.Optimizer) None ¶
Called after
training_step()
and beforeoptimizer.zero_grad()
.Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.
This is where it is called:
for optimizer in optimizers: out = training_step(...) model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad() backward()
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – The optimizer for which grads should be zeroed.
- Return type
None
- on_fit_end() None ¶
Called at the very end of fit.
If on DDP it is called on every process
- Return type
None
- on_fit_start() None ¶
Called at the very beginning of fit.
If on DDP it is called on every process
- Return type
None
- on_load_checkpoint(checkpoint: Dict[str, Any]) None ¶
Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.- Parameters
checkpoint (Dict[str, Any]) – Loaded checkpoint
- Return type
None
Example:
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- on_predict_batch_end(outputs: Optional[Any], batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the predict loop after the batch.
- Parameters
outputs (Optional[Any]) – The outputs of predict_step_end(test_step(x))
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_predict_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the predict loop before anything happens for that batch.
- Parameters
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_predict_end() None ¶
Called at the end of predicting.
- Return type
None
- on_predict_epoch_end(results: List[Any]) None ¶
Called at the end of predicting.
- Parameters
results (List[Any]) –
- Return type
None
- on_predict_epoch_start() None ¶
Called at the beginning of predicting.
- Return type
None
- on_predict_model_eval() None ¶
Sets the model to eval during the predict loop.
- Return type
None
- on_predict_start() None ¶
Called at the beginning of predicting.
- Return type
None
- on_save_checkpoint(checkpoint: Dict[str, Any]) None ¶
Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
- Parameters
checkpoint (Dict[str, Any]) – The full checkpoint dictionary before it gets dumped to a file. Implementations of this hook can insert additional data into this dictionary.
- Return type
None
Example:
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- on_test_batch_end(outputs: Optional[Union[torch.Tensor, Dict[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the test loop after the batch.
- Parameters
outputs (Optional[Union[torch.Tensor, Dict[str, Any]]]) – The outputs of test_step_end(test_step(x))
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_test_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the test loop before anything happens for that batch.
- Parameters
batch (Any) – The batched data as it is returned by the test DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_test_end() None ¶
Called at the end of testing.
- Return type
None
- on_test_epoch_end() None ¶
Called in the test loop at the very end of the epoch.
- Return type
None
- on_test_epoch_start() None ¶
Called in the test loop at the very beginning of the epoch.
- Return type
None
- on_test_model_eval() None ¶
Sets the model to eval during the test loop.
- Return type
None
- on_test_model_train() None ¶
Sets the model to train during the test loop.
- Return type
None
- on_test_start() None ¶
Called at the beginning of testing.
- Return type
None
- on_train_batch_end(outputs: Union[torch.Tensor, Dict[str, Any]], batch: Any, batch_idx: int) None ¶
Called in the training loop after the batch.
- Parameters
outputs (Union[torch.Tensor, Dict[str, Any]]) – The outputs of training_step_end(training_step(x))
batch (Any) – The batched data as it is returned by the training DataLoader.
batch_idx (int) – the index of the batch
- Return type
None
- on_train_batch_start(batch: Any, batch_idx: int) Optional[int] ¶
Called in the training loop before anything happens for that batch.
If you return -1 here, you will skip training for the rest of the current epoch.
- Parameters
batch (Any) – The batched data as it is returned by the training DataLoader.
batch_idx (int) – the index of the batch
- Return type
Optional[int]
- on_train_end() None ¶
Called at the end of training before logger experiment is closed.
- Return type
None
- on_train_epoch_end() None ¶
Called in the training loop at the very end of the epoch.
To access all batch outputs at the end of the epoch, either:
Implement training_epoch_end in the LightningModule OR
Cache data across steps on the attribute(s) of the LightningModule and access them in this hook
- Return type
None
- on_train_epoch_start() None ¶
Called in the training loop at the very beginning of the epoch.
- Return type
None
- on_train_start() None ¶
Called at the beginning of training after sanity check.
- Return type
None
- on_validation_batch_end(outputs: Optional[Union[torch.Tensor, Dict[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the validation loop after the batch.
- Parameters
outputs (Optional[Union[torch.Tensor, Dict[str, Any]]]) – The outputs of validation_step_end(validation_step(x))
batch (Any) – The batched data as it is returned by the validation DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_validation_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None ¶
Called in the validation loop before anything happens for that batch.
- Parameters
batch (Any) – The batched data as it is returned by the validation DataLoader.
batch_idx (int) – the index of the batch
dataloader_idx (int) – the index of the dataloader
- Return type
None
- on_validation_end() None ¶
Called at the end of validation.
- Return type
None
- on_validation_epoch_end() None ¶
Called in the validation loop at the very end of the epoch.
- Return type
None
- on_validation_epoch_start() None ¶
Called in the validation loop at the very beginning of the epoch.
- Return type
None
- on_validation_model_eval() None ¶
Sets the model to eval during the val loop.
- Return type
None
- on_validation_model_train() None ¶
Sets the model to train during the val loop.
- Return type
None
- on_validation_start() None ¶
Called at the beginning of validation.
- Return type
None
- optimizer_step(epoch: int, batch_idx: int, optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int = 0, optimizer_closure: Optional[Callable[[], Any]] = None, on_tpu: bool = False, using_lbfgs: bool = False) None ¶
Override this method to adjust the default way the
Trainer
calls each optimizer.By default, Lightning calls
step()
andzero_grad()
as shown in the example once per optimizer. This method (andzero_grad()
) won’t be called during the accumulation phase whenTrainer(accumulate_grad_batches != 1)
. Overriding this hook has no benefit with manual optimization.- Parameters
epoch (int) – Current epoch
batch_idx (int) – Index of current batch
optimizer (Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer]) – A PyTorch optimizer
optimizer_idx (int) – If you used multiple optimizers, this indexes into that list.
optimizer_closure (Optional[Callable[[], Any]]) – The optimizer closure. This closure must be executed as it includes the calls to
training_step()
,optimizer.zero_grad()
, andbackward()
.on_tpu (bool) –
True
if TPU backward is requiredusing_lbfgs (bool) – True if the matching optimizer is
torch.optim.LBFGS
- Return type
None
Examples:
# DEFAULT def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs): optimizer.step(closure=optimizer_closure) # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs): # update generator opt every step if optimizer_idx == 0: optimizer.step(closure=optimizer_closure) # update discriminator opt every 2 steps if optimizer_idx == 1: if (batch_idx + 1) % 2 == 0 : optimizer.step(closure=optimizer_closure) else: # call the closure by itself to run `training_step` + `backward` without an optimizer step optimizer_closure() # ... # add as many optimizers as you want
Here’s another example showing how to use this for more advanced things such as learning rate warm-up:
# learning rate warm-up def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs, ): # update params optimizer.step(closure=optimizer_closure) # manually warm up lr without a scheduler if self.trainer.global_step < 500: lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0) for pg in optimizer.param_groups: pg["lr"] = lr_scale * self.learning_rate
- optimizer_zero_grad(epoch: int, batch_idx: int, optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int) None ¶
Override this method to change the default behaviour of
optimizer.zero_grad()
.- Parameters
epoch (int) – Current epoch
batch_idx (int) – Index of current batch
optimizer (torch.optim.optimizer.Optimizer) – A PyTorch optimizer
optimizer_idx (int) – If you used multiple optimizers this indexes into that list.
- Return type
None
Examples:
# DEFAULT def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad() # Set gradients to `None` instead of zero to improve performance (not required on `torch>=2.0.0`). def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad(set_to_none=True)
See
torch.optim.Optimizer.zero_grad()
for the explanation of the above example.
- optimizers(use_pl_optimizer: bool = True) Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, lightning_fabric.wrappers._FabricOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer], List[lightning_fabric.wrappers._FabricOptimizer]] ¶
Returns the optimizer(s) that are being used during training. Useful for manual optimization.
- Parameters
use_pl_optimizer (bool) – If
True
, will wrap the optimizer(s) in aLightningOptimizer
for automatic handling of precision and profiling.- Returns
A single optimizer, or a list of optimizers in case multiple ones are present.
- Return type
Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, lightning_fabric.wrappers._FabricOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer], List[lightning_fabric.wrappers._FabricOptimizer]]
- parameters(recurse: bool = True) Iterator[torch.nn.parameter.Parameter] ¶
Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
- Return type
Iterator[torch.nn.parameter.Parameter]
Example:
>>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- predict_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] ¶
Implement one or multiple PyTorch DataLoaders for prediction.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.predict()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying prediction samples.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]]
Note
In the case where you return multiple prediction dataloaders, the
predict_step()
will have an argumentdataloader_idx
which matches the order here.
- predict_step(batch: Any, batch_idx: int, dataloader_idx: int = 0) Any ¶
Step function called during
predict()
. By default, it callsforward()
. Override to add any processing logic.The
predict_step()
is used to scale inference on multi-devices.To prevent an OOM error, it is possible to use
BasePredictionWriter
callback to write the predictions to disk or database after each batch or on epoch end.The
BasePredictionWriter
should be used while using a spawn based accelerator. This happens forTrainer(strategy="ddp_spawn")
or training on 8 TPU cores withTrainer(accelerator="tpu", devices=8)
as predictions won’t be returned.Example
class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm)
- Parameters
batch (Any) – Current batch.
batch_idx (int) – Index of current batch.
dataloader_idx (int) – Index of the current dataloader.
- Returns
Predicted output
- Return type
Any
- prepare_data() None ¶
Use this to download and prepare data. Downloading and saving data with multiple processes (distributed settings) will result in corrupted data. Lightning ensures this method is called only within a single process, so you can safely add your downloading logic within.
Warning
DO NOT set state to the model (use
setup
instead) since this is NOT called on every deviceExample:
def prepare_data(self): # good download_data() tokenize() etc() # bad self.split = data_split self.some_state = some_other_state()
In a distributed environment,
prepare_data
can be called in two ways (using prepare_data_per_node)Once per node. This is the default and is only called on LOCAL_RANK=0.
Once in total. Only called on GLOBAL_RANK=0.
Example:
# DEFAULT # called once per node on LOCAL_RANK=0 of that node class LitDataModule(LightningDataModule): def __init__(self): super().__init__() self.prepare_data_per_node = True # call on GLOBAL_RANK=0 (great for shared file systems) class LitDataModule(LightningDataModule): def __init__(self): super().__init__() self.prepare_data_per_node = False
This is called before requesting the dataloaders:
model.prepare_data() initialize_distributed() model.setup(stage) model.train_dataloader() model.val_dataloader() model.test_dataloader() model.predict_dataloader()
- Return type
None
- print(*args: Any, **kwargs: Any) None ¶
Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
*args – The thing to print. The same as for Python’s built-in print function.
**kwargs – The same as for Python’s built-in print function.
args (Any) –
kwargs (Any) –
- Return type
None
Example:
def forward(self, x): self.print(x, 'in forward')
- register_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle ¶
Registers a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) –
- register_buffer(name: str, tensor: Optional[torch.Tensor], persistent: bool = True) None ¶
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters
name (string) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
- Return type
None
Example:
>>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle ¶
Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[...], None]) –
- register_forward_pre_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle ¶
Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[...], None]) –
- register_full_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle ¶
Registers a backward hook on the module.
The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Returns
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type
torch.utils.hooks.RemovableHandle
- Parameters
hook (Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) –
- register_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Alias for
add_module()
.- Parameters
name (str) –
module (Optional[torch.nn.modules.module.Module]) –
- Return type
None
- register_parameter(name: str, param: Optional[torch.nn.parameter.Parameter]) None ¶
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (string) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- Return type
None
- requires_grad_(requires_grad: bool = True) torch.nn.modules.module.T ¶
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- save_hyperparameters(*args: Any, ignore: Optional[Union[Sequence[str], str]] = None, frame: Optional[frame] = None, logger: bool = True) None ¶
Save arguments to
hparams
attribute.- Parameters
args (Any) – single object of dict, NameSpace or OmegaConf or string names or arguments from class
__init__
ignore (Optional[Union[Sequence[str], str]]) – an argument name or a list of argument names from class
__init__
to be ignoredframe (Optional[frame]) – a frame object. Default is None
logger (bool) – Whether to send the hyperparameters to the logger. Default: True
- Return type
None
- Example::
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # manually assign arguments ... self.save_hyperparameters('arg1', 'arg3') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class AutomaticArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # equivalent automatic ... self.save_hyperparameters() ... def forward(self, *args, **kwargs): ... ... >>> model = AutomaticArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg2": abc "arg3": 3.14
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class SingleArgModel(HyperparametersMixin): ... def __init__(self, params): ... super().__init__() ... # manually assign single argument ... self.save_hyperparameters(params) ... def forward(self, *args, **kwargs): ... ... >>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14)) >>> model.hparams "p1": 1 "p2": abc "p3": 3.14
>>> from pytorch_lightning.core.mixins import HyperparametersMixin >>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # pass argument(s) to ignore as a string or in a list ... self.save_hyperparameters(ignore='arg2') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
- set_extra_state(state: Any)¶
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters
state (dict) – Extra state from the state_dict
- setup(stage: str) None ¶
Called at the beginning of fit (train + validate), validate, test, or predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.
- Parameters
stage (str) – either
'fit'
,'validate'
,'test'
, or'predict'
- Return type
None
Example:
class LitModel(...): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() # don't do this self.something = else def setup(self, stage): data = load_data(...) self.l1 = nn.Linear(28, data.num_classes)
See
torch.Tensor.share_memory_()
- Parameters
self (torch.nn.modules.module.T) –
- Return type
torch.nn.modules.module.T
- state_dict(destination=None, prefix='', keep_vars=False)¶
Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.- Returns
a dictionary containing a whole state of the module
- Return type
dict
Example:
>>> module.state_dict().keys() ['bias', 'weight']
- step(batch: etna.models.nn.nbeats.nets.NBeatsBatch, *args, **kwargs)¶
Step for loss computation for training or validation.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
loss, true_target, prediction_target
- tbptt_split_batch(batch: Any, split_size: int) List[Any] ¶
When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.
- Parameters
batch (Any) – Current batch
split_size (int) – The size of the split
- Returns
List of batch splits. Each split will be passed to
training_step()
to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.- Return type
List[Any]
Examples:
def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.abc.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits
Note
Called in the training loop after
on_train_batch_start()
if :paramref:`~pytorch_lightning.core.module.LightningModule.truncated_bptt_steps` > 0. Each returned batch split is passed separately totraining_step()
.
- teardown(stage: str) None ¶
Called at the end of fit (train + validate), validate, test, or predict.
- Parameters
stage (str) – either
'fit'
,'validate'
,'test'
, or'predict'
- Return type
None
- test_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] ¶
Implement one or multiple PyTorch DataLoaders for testing.
For data processing use the following pattern:
download in
prepare_data()
process and split in
setup()
However, the above are only necessary for distributed processing.
Warning
do not assign state in prepare_data
test()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying testing samples.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]]
Example:
def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def test_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a test dataset and a
test_step()
, you don’t need to implement this method.Note
In the case where you return multiple test dataloaders, the
test_step()
will have an argumentdataloader_idx
which matches the order here.
- test_epoch_end(outputs: Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) None ¶
Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs (Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) – List of outputs you defined in
test_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
None
- Return type
None
Note
If you didn’t define a
test_step()
, this won’t be called.Examples
With a single dataloader:
def test_epoch_end(self, outputs): # do something with the outputs of all test batches all_test_preds = test_step_outputs.predictions some_result = calc_all_results(all_test_preds) self.log(some_result)
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): final_value = 0 for dataloader_outputs in outputs: for test_step_out in dataloader_outputs: # do something final_value += test_step_out self.log("final_metric", final_value)
- test_step(*args: Any, **kwargs: Any) Optional[Union[torch.Tensor, Dict[str, Any]]] ¶
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
batch – The output of your
DataLoader
.batch_idx – The index of this batch.
dataloader_id – The index of the dataloader that produced this batch. (only if multiple test dataloaders used).
args (Any) –
kwargs (Any) –
- Returns
Any of.
Any object or value
None
- Testing will skip to the next batch
- Return type
Optional[Union[torch.Tensor, Dict[str, Any]]]
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- test_step_end(*args: Any, **kwargs: Any) Optional[Union[torch.Tensor, Dict[str, Any]]] ¶
Use this when testing with DP because
test_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(step_output)
- Parameters
step_output – What you return in
test_step()
for each batch part.args (Any) –
kwargs (Any) –
- Returns
None or anything
- Return type
Optional[Union[torch.Tensor, Dict[str, Any]]]
# WITHOUT test_step_end # if used in DP, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) self.log("test_loss", loss) # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return out def test_step_end(self, output_results): # this out is now the full size of the batch all_test_step_outs = output_results.out loss = nce_loss(all_test_step_outs) self.log("test_loss", loss)
See also
See the Multi GPU Training guide for more details.
- to(*args: Any, **kwargs: Any) typing_extensions.Self ¶
See
torch.nn.Module.to()
.- Parameters
args (Any) –
kwargs (Any) –
- Return type
typing_extensions.Self
- to_empty(*, device: Union[str, torch.device]) torch.nn.modules.module.T ¶
Moves the parameters and buffers to the specified device without copying storage.
- Parameters
device (
torch.device
) – The desired device of the parameters and buffers in this module.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- to_onnx(file_path: Union[str, pathlib.Path], input_sample: Optional[Any] = None, **kwargs: Any) None ¶
Saves the model in ONNX format.
- Parameters
file_path (Union[str, pathlib.Path]) – The path of the file the onnx model should be saved to.
input_sample (Optional[Any]) – An input for tracing. Default: None (Use self.example_input_array)
**kwargs – Will be passed to torch.onnx.export function.
kwargs (Any) –
- Return type
None
class SimpleModel(LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(in_features=64, out_features=4) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1))) import os, tempfile model = SimpleModel() with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile: model.to_onnx(tmpfile.name, torch.randn((1, 64)), export_params=True) os.path.isfile(tmpfile.name)
- to_torchscript(file_path: Optional[Union[str, pathlib.Path]] = None, method: Optional[str] = 'script', example_inputs: Optional[Any] = None, **kwargs: Any) Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]] ¶
By default compiles the whole model to a
ScriptModule
. If you want to use tracing, please provided the argumentmethod='trace'
and make sure that either the example_inputs argument is provided, or the model hasexample_input_array
set. If you would like to customize the modules that are scripted you should override this method. In case you want to return multiple modules, we recommend using a dictionary.- Parameters
file_path (Optional[Union[str, pathlib.Path]]) – Path where to save the torchscript. Default: None (no file saved).
method (Optional[str]) – Whether to use TorchScript’s script or trace method. Default: ‘script’
example_inputs (Optional[Any]) – An input to be used to do tracing when method is set to ‘trace’. Default: None (uses
example_input_array
)**kwargs – Additional arguments that will be passed to the
torch.jit.script()
ortorch.jit.trace()
function.kwargs (Any) –
- Return type
Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]]
Note
Requires the implementation of the
forward()
method.The exported script will be set to evaluation mode.
It is recommended that you install the latest supported version of PyTorch to use this feature without limitations. See also the
torch.jit
documentation for supported features.
Example
>>> class SimpleModel(LightningModule): ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(in_features=64, out_features=4) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1))) ... >>> import os >>> model = SimpleModel() >>> model.to_torchscript(file_path="model.pt") >>> os.path.isfile("model.pt") >>> torch.jit.save(model.to_torchscript(file_path="model_trace.pt", method='trace', ... example_inputs=torch.randn(1, 64))) >>> os.path.isfile("model_trace.pt") True
- Returns
This LightningModule as a torchscript, regardless of whether file_path is defined or not.
- Parameters
file_path (Optional[Union[str, pathlib.Path]]) –
method (Optional[str]) –
example_inputs (Optional[Any]) –
kwargs (Any) –
- Return type
Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]]
- classmethod to_uncompiled(model: Union[pl.LightningModule, torch._dynamo.OptimizedModule]) pl.LightningModule ¶
Returns an instance of LightningModule without any compilation optimizations from a compiled model.
This takes either a
torch._dynamo.OptimizedModule
returned bytorch.compile()
or aLightningModule
returned byLightningModule.from_compiled
.Note: this method will in-place modify the
LightningModule
that is passed in.- Parameters
model (Union[pl.LightningModule, torch._dynamo.OptimizedModule]) –
- Return type
pl.LightningModule
- toggle_optimizer(optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int) None ¶
Makes sure only the gradients of the current optimizer’s parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.
This is only called automatically when automatic optimization is enabled and multiple optimizers are used. It works with
untoggle_optimizer()
to make sureparam_requires_grad_state
is properly reset.- Parameters
optimizer (Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer]) – The optimizer to toggle.
optimizer_idx (int) – The index of the optimizer to toggle.
- Return type
None
- train(mode: bool = True) torch.nn.modules.module.T ¶
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- train_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader], Sequence[Sequence[torch.utils.data.dataloader.DataLoader]], Sequence[Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, torch.utils.data.dataloader.DataLoader], Dict[str, Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, Sequence[torch.utils.data.dataloader.DataLoader]]] ¶
Implement one or more PyTorch DataLoaders for training.
- Returns
A collection of
torch.utils.data.DataLoader
specifying training samples. In the case of multiple dataloaders, please see this section.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader], Sequence[Sequence[torch.utils.data.dataloader.DataLoader]], Sequence[Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, torch.utils.data.dataloader.DataLoader], Dict[str, Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, Sequence[torch.utils.data.dataloader.DataLoader]]]
The dataloader you return will not be reloaded unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.
For data processing use the following pattern:
download in
prepare_data()
process and split in
setup()
However, the above are only necessary for distributed processing.
Warning
do not assign state in prepare_data
fit()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example:
# single dataloader def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=True ) return loader # multiple dataloaders, return as list def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a list of tensors: [batch_mnist, batch_cifar] return [mnist_loader, cifar_loader] # multiple dataloader, return as dict def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a dict of tensors: {'mnist': batch_mnist, 'cifar': batch_cifar} return {'mnist': mnist_loader, 'cifar': cifar_loader}
- training_epoch_end(outputs: List[Union[torch.Tensor, Dict[str, Any]]]) None ¶
Called at the end of the training epoch with the outputs of all training steps. Use this in case you need to do something with all the outputs returned by
training_step()
.# the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs)
- Parameters
outputs (List[Union[torch.Tensor, Dict[str, Any]]]) – List of outputs you defined in
training_step()
. If there are multiple optimizers or when usingtruncated_bptt_steps > 0
, the lists have the dimensions (n_batches, tbptt_steps, n_optimizers). Dimensions of length 1 are squeezed.- Returns
None
- Return type
None
Note
If this method is not overridden, this won’t be called.
def training_epoch_end(self, training_step_outputs): # do something with all training_step outputs for out in training_step_outputs: ...
- training_step(batch: dict, *args, **kwargs)¶
Training step.
- Parameters
batch (dict) – batch of data
- Returns
loss
- training_step_end(step_output: Union[torch.Tensor, Dict[str, Any]]) Union[torch.Tensor, Dict[str, Any]] ¶
Use this when training with dp because
training_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(step_output)
- Parameters
step_output (Union[torch.Tensor, Dict[str, Any]]) – What you return in training_step for each batch part.
- Returns
Anything
- Return type
Union[torch.Tensor, Dict[str, Any]]
When using the DP strategy, only a portion of the batch is inside the training_step:
def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) # softmax uses only a portion of the batch in the denominator loss = self.softmax(out) loss = nce_loss(loss) return loss
If you wish to do something with all the parts of the batch, then use this method to do it:
def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return {"pred": out} def training_step_end(self, training_step_outputs): gpu_0_pred = training_step_outputs[0]["pred"] gpu_1_pred = training_step_outputs[1]["pred"] gpu_n_pred = training_step_outputs[n]["pred"] # this softmax now uses the full batch loss = nce_loss([gpu_0_pred, gpu_1_pred, gpu_n_pred]) return loss
See also
See the Multi GPU Training guide for more details.
- transfer_batch_to_device(batch: Any, device: torch.device, dataloader_idx: int) Any ¶
Override this hook if your
DataLoader
returns tensors wrapped in a custom data structure.The data types listed below (and any arbitrary nesting of them) are supported out of the box:
torch.Tensor
or anything that implements .to(…)list
dict
tuple
For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, …).
Note
This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch (Any) – A batch of data that needs to be transferred to a new device.
device (torch.device) – The target device as defined in PyTorch.
dataloader_idx (int) – The index of the dataloader to which the batch belongs.
- Returns
A reference to the data on the new device.
- Return type
Any
Example:
def transfer_batch_to_device(self, batch, device, dataloader_idx): if isinstance(batch, CustomBatch): # move all tensors in your custom data structure to the device batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) elif dataloader_idx == 0: # skip device transfer for the first dataloader or anything you wish pass else: batch = super().transfer_batch_to_device(batch, device, dataloader_idx) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.MisconfigurationException – If using IPUs,
Trainer(accelerator='ipu')
.
- Parameters
batch (Any) –
device (torch.device) –
dataloader_idx (int) –
- Return type
Any
See also
move_data_to_device()
apply_to_collection()
- type(dst_type: Union[str, torch.dtype]) typing_extensions.Self ¶
-
- Parameters
dst_type (Union[str, torch.dtype]) –
- Return type
typing_extensions.Self
- unfreeze() None ¶
Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- Return type
None
- untoggle_optimizer(optimizer_idx: int) None ¶
Resets the state of required gradients that were toggled with
toggle_optimizer()
.This is only called automatically when automatic optimization is enabled and multiple optimizers are used.
- Parameters
optimizer_idx (int) – The index of the optimizer to untoggle.
- Return type
None
- val_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] ¶
Implement one or multiple PyTorch DataLoaders for validation.
The dataloader you return will not be reloaded unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.fit()
validate()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying validation samples.- Return type
Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]]
Examples:
def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a validation dataset and a
validation_step()
, you don’t need to implement this method.Note
In the case where you return multiple validation dataloaders, the
validation_step()
will have an argumentdataloader_idx
which matches the order here.
- validation_epoch_end(outputs: Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) None ¶
Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs (Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) – List of outputs you defined in
validation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Returns
None
- Return type
None
Note
If you didn’t define a
validation_step()
, this won’t be called.Examples
With a single dataloader:
def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: ...
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log("final_metric", final_value)
- validation_step(batch: dict, *args, **kwargs)¶
Validate step.
- Parameters
batch (dict) – batch of data
- Returns
loss
- validation_step_end(*args: Any, **kwargs: Any) Optional[Union[torch.Tensor, Dict[str, Any]]] ¶
Use this when validating with dp because
validation_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(step_output)
- Parameters
step_output – What you return in
validation_step()
for each batch part.args (Any) –
kwargs (Any) –
- Returns
None or anything
- Return type
Optional[Union[torch.Tensor, Dict[str, Any]]]
# WITHOUT validation_step_end # if used in DP, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) loss = self.softmax(out) loss = nce_loss(loss) self.log("val_loss", loss) # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return out def validation_step_end(self, val_step_outputs): for out in val_step_outputs: ...
See also
See the Multi GPU Training guide for more details.
- xpu(device: Optional[Union[torch.device, int]] = None) torch.nn.modules.module.T ¶
Moves all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
self (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
- zero_grad(set_to_none: bool = False) None ¶
Sets gradients of all model parameters to zero. See similar function under
torch.optim.Optimizer
for more context.- Parameters
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.- Return type
None
- property automatic_optimization: bool¶
If set to
False
you are responsible for calling.backward()
,.step()
,.zero_grad()
.
- property current_epoch: int¶
The current epoch in the
Trainer
, or 0 if not attached.
- property example_input_array: Optional[Union[torch.Tensor, Tuple, Dict]]¶
The example input array is a specification of what the module can consume in the
forward()
method. The return type is interpreted as follows:Single tensor: It is assumed the model takes a single argument, i.e.,
model.forward(model.example_input_array)
Tuple: The input array should be interpreted as a sequence of positional arguments, i.e.,
model.forward(*model.example_input_array)
Dict: The input array represents named keyword arguments, i.e.,
model.forward(**model.example_input_array)
- property global_rank: int¶
The index of the current process across all nodes and devices.
- property global_step: int¶
Total training batches seen across all epochs.
If no Trainer is attached, this propery is 0.
- property hparams: Union[pytorch_lightning.utilities.parsing.AttributeDict, MutableMapping]¶
The collection of hyperparameters saved with
save_hyperparameters()
. It is mutable by the user. For the frozen set of initial hyperparameters, usehparams_initial
.- Returns
Mutable hyperparameters dictionary
- property hparams_initial: pytorch_lightning.utilities.parsing.AttributeDict¶
The collection of hyperparameters saved with
save_hyperparameters()
. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed throughhparams
.- Returns
immutable initial hyperparameters
- Return type
AttributeDict
- property local_rank: int¶
The index of the current process within a single node.
- property logger: Optional[Union[pytorch_lightning.loggers.logger.Logger, lightning_fabric.loggers.logger.Logger]]¶
Reference to the logger object in the Trainer.
- property loggers: Union[List[pytorch_lightning.loggers.logger.Logger], List[lightning_fabric.loggers.logger.Logger]]¶
Reference to the list of loggers in the Trainer.
- property on_gpu: bool¶
Returns
True
if this model is currently located on a GPU.Useful to set flags around the LightningModule for different CPU vs GPU behavior.
- property truncated_bptt_steps: int¶
Enables Truncated Backpropagation Through Time in the Trainer when set to a positive integer.
It represents the number of times
training_step()
gets called before backpropagation. If this is > 0, thetraining_step()
receives an additional argumenthiddens
and is expected to return a hidden state.
- class NBeatsInterpretableNet(input_size: int, output_size: int, loss: torch.nn.modules.module.Module, trend_blocks: int, trend_layers: int, trend_layer_size: int, degree_of_polynomial: int, seasonality_blocks: int, seasonality_layers: int, seasonality_layer_size: int, num_of_harmonics: int, lr: float, optimizer_params: Optional[Dict[str, Any]] = None)[source]¶
Interpretable N-BEATS model.
Initialize N-BEATS model.
- Parameters
input_size (int) – Input data size.
output_size (int) – Forecast size.
loss (torch.nn.Module) – Optimisation objective. The loss function should accept three arguments:
y_true
,y_pred
andmask
. The last parameter is a binary mask that denotes which points are valid forecasts.trend_blocks (int) – Number of trend blocks.
trend_layers (int) – Number of inner layers in each trend block.
trend_layer_size (int) – Inner layer size in trend blocks.
degree_of_polynomial (int) – Polynomial degree for trend modeling.
seasonality_blocks (int) – Number of seasonality blocks.
seasonality_layers (int) – Number of inner layers in each seasonality block.
seasonality_layer_size (int) – Inner layer size in seasonality blocks.
num_of_harmonics (int) – Number of harmonics for seasonality estimation.
lr (float) – Optimizer learning rate.
optimizer_params (Optional[Dict[str, Any]]) – Additional parameters for the optimizer.
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None ¶
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (string) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- Return type
None
- all_gather(data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False) Union[torch.Tensor, Dict, List, Tuple] ¶
Allows users to call
self.all_gather()
from the LightningModule, thus making theall_gather
operation accelerator agnostic.all_gather
is a function provided by accelerators to gather a tensor from several distributed processes.- Parameters
data (Union[torch.Tensor, Dict, List, Tuple]) – int, float, tensor of shape (batch, …), or a (possibly nested) collection thereof.
group (Optional[Any]) – the process group to gather results from. Defaults to all processes (world)
sync_grads (bool) – flag that allows users to synchronize gradients for the all_gather operation
- Returns
A tensor of shape (world_size, batch, …), or if the input was a collection the output will also be a collection with tensors of this shape.
- Return type
Union[torch.Tensor, Dict, List, Tuple]
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T ¶
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init).- Parameters
fn (
Module
-> None) – function to be applied to each submoduleself (torch.nn.modules.module.T) –
- Returns
self
- Return type
Module
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- backward(loss: torch.Tensor, optimizer: Optional[lightning_fabric.utilities.types.Steppable], optimizer_idx: Optional[int], *args: Any, **kwargs: Any) None ¶
Called to perform backward on the loss returned in
training_step()
. Override this hook with your own implementation if you need to.- Parameters
loss (torch.Tensor) – The loss tensor returned by
training_step()
. If gradient accumulation is used, the loss here holds the normalized value (scaled by 1 / accumulation steps).optimizer (Optional[lightning_fabric.utilities.types.Steppable]) – Current optimizer being used.
None
if using manual optimization.optimizer_idx (Optional[int]) – Index of the current optimizer being used.
None
if using manual optimization.args (Any) –
kwargs (Any) –
- Return type
None
Example:
def backward(self, loss, optimizer, optimizer_idx): loss.backward()
- bfloat16() torch.nn.modules.module.T ¶
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- buffers(recurse: bool = True) Iterator[torch.Tensor] ¶
Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
- Return type
Iterator[torch.Tensor]
Example:
>>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module] ¶
Returns an iterator over immediate children modules.
- Yields
Module – a child module
- Return type
Iterator[torch.nn.modules.module.Module]
- clip_gradients(optimizer: torch.optim.optimizer.Optimizer, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None) None ¶
Handles gradient clipping internally.
Note
Do not override this method. If you want to customize gradient clipping, consider using
configure_gradient_clipping()
method.For manual optimization (
self.automatic_optimization = False
), if you want to use gradient clipping, consider callingself.clip_gradients(opt, gradient_clip_val=0.5, gradient_clip_algorithm="norm")
manually in the training step.
- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
gradient_clip_val (Optional[Union[int, float]]) – The value at which to clip gradients.
gradient_clip_algorithm (Optional[str]) – The gradient clipping algorithm to use. Pass
gradient_clip_algorithm="value"
to clip by value, andgradient_clip_algorithm="norm"
to clip by norm.
- Return type
None
- configure_callbacks() Union[Sequence[pytorch_lightning.callbacks.callback.Callback], pytorch_lightning.callbacks.callback.Callback] ¶
Configure model-specific callbacks. When the model gets attached, e.g., when
.fit()
or.test()
gets called, the list or a callback returned here will be merged with the list of callbacks passed to the Trainer’scallbacks
argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer’s callbacks list, it will take priority and replace them. In addition, Lightning will make sureModelCheckpoint
callbacks run last.- Returns
A callback or a list of callbacks which will extend the list of callbacks in the Trainer.
- Return type
Union[Sequence[pytorch_lightning.callbacks.callback.Callback], pytorch_lightning.callbacks.callback.Callback]
Example:
def configure_callbacks(self): early_stop = EarlyStopping(monitor="val_acc", mode="max") checkpoint = ModelCheckpoint(monitor="val_loss") return [early_stop, checkpoint]
- configure_gradient_clipping(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None) None ¶
Perform gradient clipping for the optimizer parameters. Called before
optimizer_step()
.- Parameters
optimizer (torch.optim.optimizer.Optimizer) – Current optimizer being used.
optimizer_idx (int) – Index of the current optimizer being used.
gradient_clip_val (Optional[Union[int, float]]) – The value at which to clip gradients. By default value passed in Trainer will be available here.
gradient_clip_algorithm (Optional[str]) – The gradient clipping algorithm to use. By default value passed in Trainer will be available here.
- Return type
None
Example:
# Perform gradient clipping on gradients associated with discriminator (optimizer_idx=1) in GAN def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): if optimizer_idx == 1: # Lightning will handle the gradient clipping self.clip_gradients( optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm ) else: # implement your own custom logic to clip gradients for generator (optimizer_idx=0)
- configure_optimizers() Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]] ¶
Optimizer configuration.
- Return type
Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]]
- configure_sharded_model() None ¶
Hook to create modules in a distributed aware context. This is useful for when using sharded plugins, where we’d like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time.
This hook is called during each of fit/val/test/predict stages in the same process, so ensure that implementation of this hook is idempotent.
- Return type
None
- cpu() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- cuda(device: Optional[Union[torch.device, int]] = None) typing_extensions.Self ¶
Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
- Parameters
device (Optional[Union[torch.device, int]]) – If specified, all parameters will be copied to that device. If None, the current CUDA device index will be used.
- Returns
self
- Return type
Module
- double() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- eval() torch.nn.modules.module.T ¶
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns
self
- Return type
Module
- Parameters
self (torch.nn.modules.module.T) –
- extra_repr() str ¶
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- Return type
str
- float() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- forward(batch: etna.models.nn.nbeats.nets.NBeatsBatch) torch.Tensor ¶
Forward pass.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
Prediction data.
- Return type
- freeze() None ¶
Freeze all params for inference.
Example:
model = MyLightningModule(...) model.freeze()
- Return type
None
- classmethod from_compiled(model: torch._dynamo.OptimizedModule) pl.LightningModule ¶
Returns an instance LightningModule from the output of
torch.compile
.The
torch.compile
function returns atorch._dynamo.OptimizedModule
, which wraps the LightningModule passed in as an argument, but doesn’t inherit from it. This means that the output oftorch.compile
behaves like a LightningModule but it doesn’t inherit from it (i.e. isinstance will fail).Use this method to obtain a LightningModule that still runs with all the optimizations from
torch.compile
.- Parameters
model (torch._dynamo.OptimizedModule) –
- Return type
pl.LightningModule
- get_buffer(target: str) torch.Tensor ¶
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The buffer referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any ¶
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns
Any extra state to store in the module’s state_dict
- Return type
object
- get_parameter(target: str) torch.nn.parameter.Parameter ¶
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target (str) – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
The Parameter referenced by
target
- Return type
torch.nn.Parameter
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) torch.nn.modules.module.Module ¶
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters
target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns
The submodule referenced by
target
- Return type
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() typing_extensions.Self ¶
-
- Return type
typing_extensions.Self
- classmethod load_from_checkpoint(checkpoint_path: Union[str, pathlib.Path, IO], map_location: Optional[Union[torch.device, str, int, Callable[[Union[torch.device, str, int]], Union[torch.device, str, int]], Dict[Union[torch.device, str, int], Union[torch.device, str, int]]]] = None, hparams_file: Optional[Union[str, pathlib.Path]] = None, strict: bool = True, **kwargs: Any) typing_extensions.Self ¶
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"hyper_parameters"
.- Parameters
checkpoint_path (Union[str, pathlib.Path, IO]) – Path to checkpoint. This can also be a URL, or file-like object
map_location (Optional[Union[torch.device, str, int, Callable[[Union[torch.device, str, int]], Union[torch.device, str, int]], Dict[Union[torch.device, str, int], Union[torch.device, str, int]]]]) – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as in
torch.load()
.hparams_file (Optional[Union[str, pathlib.Path]]) –
Optional path to a
.yaml
or.csv
file with hierarchical structure as in this example:drop_prob: 0.2 dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a
.yaml
file with the hparams you’d like to use. These will be converted into adict
and passed into yourLightningModule
for use.If your model’s
hparams
argument isNamespace
and.yaml
file has hierarchical structure, you need to refactor your model to treathparams
asdict
.strict (bool) – Whether to strictly enforce that the keys in
checkpoint_path
match the keys returned by this module’s state dict.**kwargs – Any extra keyword args needed to init the model. Can also be used to override saved hyperparameter values.
kwargs (Any) –
- Returns
LightningModule
instance with loaded weights and hyperparameters (if available).- Return type
typing_extensions.Self
Note
load_from_checkpoint
is a class method. You should use yourLightningModule
class to call it instead of theLightningModule
instance.Example:
# load weights without mapping ... model = MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values model = MyLightningModule.load_from_checkpoint( PATH, num_layers=128, pretrained_ckpt_path=NEW_PATH, ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
- load_state_dict(state_dict: OrderedDict[str, Tensor], strict: bool = True)¶
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type
NamedTuple
withmissing_keys
andunexpected_keys
fields
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- log(name: str, value: Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]], prog_bar: bool = False, logger: Optional[bool] = None, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, metric_attribute: Optional[str] = None, rank_zero_only: bool = False) None ¶
Log a key, value pair.
Example:
self.log('train_loss', loss)
The default behavior per hook is documented here: Automatic Logging.
- Parameters
name (str) – key to log.
value (Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]) – value to log. Can be a
float
,Tensor
,Metric
, or a dictionary of the former.prog_bar (bool) – if
True
logs to the progress bar.logger (Optional[bool]) – if
True
logs to the logger.on_step (Optional[bool]) – if
True
logs at this step. The default value is determined by the hook. See Automatic Logging for details.on_epoch (Optional[bool]) – if
True
logs epoch accumulated metrics. The default value is determined by the hook. See Automatic Logging for details.reduce_fx (Union[str, Callable]) – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph (bool) – if
True
, will not auto detach the graph.sync_dist (bool) – if
True
, reduces the metric across devices. Use with care as this may lead to a significant communication overhead.sync_dist_group (Optional[Any]) – the DDP group to sync across.
add_dataloader_idx (bool) – if
True
, appends the index of the current dataloader to the name (when using multiple dataloaders). If False, user needs to give unique names for each dataloader to not mix the values.batch_size (Optional[int]) – Current batch_size. This will be directly inferred from the loaded batch, but for some data structures you might need to explicitly provide it.
metric_attribute (Optional[str]) – To restore the metric state, Lightning requires the reference of the
torchmetrics.Metric
in your model. This is found automatically if it is a model attribute.rank_zero_only (bool) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
None
- log_dict(dictionary: Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]], prog_bar: bool = False, logger: Optional[bool] = None, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, rank_zero_only: bool = False) None ¶
Log a dictionary of values at once.
Example:
values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} self.log_dict(values)
- Parameters
dictionary (Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]]) – key value pairs. The values can be a
float
,Tensor
,Metric
, a dictionary of the former or aMetricCollection
.prog_bar (bool) – if
True
logs to the progress base.logger (Optional[bool]) – if
True
logs to the logger.on_step (Optional[bool]) – if
True
logs at this step.None
auto-logs for training_step but not validation/test_step. The default value is determined by the hook. See Automatic Logging for details.on_epoch (Optional[bool]) – if
True
logs epoch accumulated metrics.None
auto-logs for val/test step but nottraining_step
. The default value is determined by the hook. See Automatic Logging for details.reduce_fx (Union[str, Callable]) – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph (bool) – if
True
, will not auto-detach the graphsync_dist (bool) – if
True
, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.sync_dist_group (Optional[Any]) – the ddp group to sync across.
add_dataloader_idx (bool) – if
True
, appends the index of the current dataloader to the name (when using multiple). IfFalse
, user needs to give unique names for each dataloader to not mix values.batch_size (Optional[int]) – Current batch size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.
rank_zero_only (bool) – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- Return type
None
- log_grad_norm(grad_norm_dict: Dict[str, float]) None ¶
Override this method to change the default behaviour of
log_grad_norm
.If clipping gradients, the gradients will not have been clipped yet.
- Parameters
grad_norm_dict (Dict[str, float]) – Dictionary containing current grad norm metrics
- Return type
None
Example:
# DEFAULT def log_grad_norm(self, grad_norm_dict): self.log_dict(grad_norm_dict, on_step=True, on_epoch=True, prog_bar=False, logger=True)
- lr_scheduler_step(scheduler: Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau], optimizer_idx: int, metric: Optional[Any]) None ¶
Override this method to adjust the default way the
Trainer
calls each scheduler. By default, Lightning callsstep()
and as shown in the example for each scheduler based on itsinterval
.- Parameters
scheduler (Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau]) – Learning rate scheduler.
optimizer_idx (int) – Index of the optimizer associated with this scheduler.
metric (Optional[Any]) – Value of the monitor used for schedulers like
ReduceLROnPlateau
.
- Return type
None
Examples:
# DEFAULT def lr_scheduler_step(self, scheduler, optimizer_idx, metric): if metric is None: scheduler.step() else: scheduler.step(metric) # Alternative way to update schedulers if it requires an epoch value def lr_scheduler_step(self, scheduler, optimizer_idx, metric): scheduler.step(epoch=self.current_epoch)